MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oelimcl Structured version   Visualization version   GIF version

Theorem oelimcl 8219
Description: The ordinal exponential with a limit ordinal is a limit ordinal. (Contributed by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
oelimcl ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → Lim (𝐴o 𝐵))

Proof of Theorem oelimcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifi 4096 . . . 4 (𝐴 ∈ (On ∖ 2o) → 𝐴 ∈ On)
2 limelon 6247 . . . 4 ((𝐵𝐶 ∧ Lim 𝐵) → 𝐵 ∈ On)
3 oecl 8155 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) ∈ On)
41, 2, 3syl2an 597 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝐴o 𝐵) ∈ On)
5 eloni 6194 . . 3 ((𝐴o 𝐵) ∈ On → Ord (𝐴o 𝐵))
64, 5syl 17 . 2 ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → Ord (𝐴o 𝐵))
71adantr 483 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → 𝐴 ∈ On)
82adantl 484 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → 𝐵 ∈ On)
9 dif20el 8123 . . . 4 (𝐴 ∈ (On ∖ 2o) → ∅ ∈ 𝐴)
109adantr 483 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → ∅ ∈ 𝐴)
11 oen0 8205 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴o 𝐵))
127, 8, 10, 11syl21anc 835 . 2 ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → ∅ ∈ (𝐴o 𝐵))
13 oelim2 8214 . . . . . 6 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝐴o 𝐵) = 𝑦 ∈ (𝐵 ∖ 1o)(𝐴o 𝑦))
141, 13sylan 582 . . . . 5 ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝐴o 𝐵) = 𝑦 ∈ (𝐵 ∖ 1o)(𝐴o 𝑦))
1514eleq2d 2897 . . . 4 ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝑥 ∈ (𝐴o 𝐵) ↔ 𝑥 𝑦 ∈ (𝐵 ∖ 1o)(𝐴o 𝑦)))
16 eliun 4916 . . . . 5 (𝑥 𝑦 ∈ (𝐵 ∖ 1o)(𝐴o 𝑦) ↔ ∃𝑦 ∈ (𝐵 ∖ 1o)𝑥 ∈ (𝐴o 𝑦))
17 eldifi 4096 . . . . . . 7 (𝑦 ∈ (𝐵 ∖ 1o) → 𝑦𝐵)
187adantr 483 . . . . . . . . . . . 12 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → 𝐴 ∈ On)
198adantr 483 . . . . . . . . . . . . 13 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → 𝐵 ∈ On)
20 simprl 769 . . . . . . . . . . . . 13 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → 𝑦𝐵)
21 onelon 6209 . . . . . . . . . . . . 13 ((𝐵 ∈ On ∧ 𝑦𝐵) → 𝑦 ∈ On)
2219, 20, 21syl2anc 586 . . . . . . . . . . . 12 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → 𝑦 ∈ On)
23 oecl 8155 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴o 𝑦) ∈ On)
2418, 22, 23syl2anc 586 . . . . . . . . . . 11 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → (𝐴o 𝑦) ∈ On)
25 eloni 6194 . . . . . . . . . . 11 ((𝐴o 𝑦) ∈ On → Ord (𝐴o 𝑦))
2624, 25syl 17 . . . . . . . . . 10 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → Ord (𝐴o 𝑦))
27 simprr 771 . . . . . . . . . 10 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → 𝑥 ∈ (𝐴o 𝑦))
28 ordsucss 7526 . . . . . . . . . 10 (Ord (𝐴o 𝑦) → (𝑥 ∈ (𝐴o 𝑦) → suc 𝑥 ⊆ (𝐴o 𝑦)))
2926, 27, 28sylc 65 . . . . . . . . 9 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → suc 𝑥 ⊆ (𝐴o 𝑦))
30 simpll 765 . . . . . . . . . . 11 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → 𝐴 ∈ (On ∖ 2o))
31 oeordi 8206 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝐴 ∈ (On ∖ 2o)) → (𝑦𝐵 → (𝐴o 𝑦) ∈ (𝐴o 𝐵)))
3219, 30, 31syl2anc 586 . . . . . . . . . 10 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → (𝑦𝐵 → (𝐴o 𝑦) ∈ (𝐴o 𝐵)))
3320, 32mpd 15 . . . . . . . . 9 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → (𝐴o 𝑦) ∈ (𝐴o 𝐵))
34 onelon 6209 . . . . . . . . . . . 12 (((𝐴o 𝑦) ∈ On ∧ 𝑥 ∈ (𝐴o 𝑦)) → 𝑥 ∈ On)
3524, 27, 34syl2anc 586 . . . . . . . . . . 11 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → 𝑥 ∈ On)
36 suceloni 7521 . . . . . . . . . . 11 (𝑥 ∈ On → suc 𝑥 ∈ On)
3735, 36syl 17 . . . . . . . . . 10 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → suc 𝑥 ∈ On)
384adantr 483 . . . . . . . . . 10 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → (𝐴o 𝐵) ∈ On)
39 ontr2 6231 . . . . . . . . . 10 ((suc 𝑥 ∈ On ∧ (𝐴o 𝐵) ∈ On) → ((suc 𝑥 ⊆ (𝐴o 𝑦) ∧ (𝐴o 𝑦) ∈ (𝐴o 𝐵)) → suc 𝑥 ∈ (𝐴o 𝐵)))
4037, 38, 39syl2anc 586 . . . . . . . . 9 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → ((suc 𝑥 ⊆ (𝐴o 𝑦) ∧ (𝐴o 𝑦) ∈ (𝐴o 𝐵)) → suc 𝑥 ∈ (𝐴o 𝐵)))
4129, 33, 40mp2and 697 . . . . . . . 8 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴o 𝑦))) → suc 𝑥 ∈ (𝐴o 𝐵))
4241expr 459 . . . . . . 7 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ 𝑦𝐵) → (𝑥 ∈ (𝐴o 𝑦) → suc 𝑥 ∈ (𝐴o 𝐵)))
4317, 42sylan2 594 . . . . . 6 (((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ 𝑦 ∈ (𝐵 ∖ 1o)) → (𝑥 ∈ (𝐴o 𝑦) → suc 𝑥 ∈ (𝐴o 𝐵)))
4443rexlimdva 3283 . . . . 5 ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (∃𝑦 ∈ (𝐵 ∖ 1o)𝑥 ∈ (𝐴o 𝑦) → suc 𝑥 ∈ (𝐴o 𝐵)))
4516, 44syl5bi 244 . . . 4 ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝑥 𝑦 ∈ (𝐵 ∖ 1o)(𝐴o 𝑦) → suc 𝑥 ∈ (𝐴o 𝐵)))
4615, 45sylbid 242 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝑥 ∈ (𝐴o 𝐵) → suc 𝑥 ∈ (𝐴o 𝐵)))
4746ralrimiv 3180 . 2 ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → ∀𝑥 ∈ (𝐴o 𝐵)suc 𝑥 ∈ (𝐴o 𝐵))
48 dflim4 7556 . 2 (Lim (𝐴o 𝐵) ↔ (Ord (𝐴o 𝐵) ∧ ∅ ∈ (𝐴o 𝐵) ∧ ∀𝑥 ∈ (𝐴o 𝐵)suc 𝑥 ∈ (𝐴o 𝐵)))
496, 12, 47, 48syl3anbrc 1338 1 ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → Lim (𝐴o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  wral 3137  wrex 3138  cdif 3926  wss 3929  c0 4284   ciun 4912  Ord word 6183  Oncon0 6184  Lim wlim 6185  suc csuc 6186  (class class class)co 7149  1oc1o 8088  2oc2o 8089  o coe 8094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-ral 3142  df-rex 3143  df-reu 3144  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7574  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-1o 8095  df-2o 8096  df-oadd 8099  df-omul 8100  df-oexp 8101
This theorem is referenced by:  oaabs2  8265  omabs  8267
  Copyright terms: Public domain W3C validator