MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omxpen Structured version   Visualization version   GIF version

Theorem omxpen 8619
Description: The cardinal and ordinal products are always equinumerous. Exercise 10 of [TakeutiZaring] p. 89. (Contributed by Mario Carneiro, 3-Mar-2013.)
Assertion
Ref Expression
omxpen ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ≈ (𝐴 × 𝐵))

Proof of Theorem omxpen
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpcomeng 8609 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 × 𝐵) ≈ (𝐵 × 𝐴))
2 xpexg 7473 . . . . 5 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵 × 𝐴) ∈ V)
32ancoms 461 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 × 𝐴) ∈ V)
4 omcl 8161 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On)
5 eqid 2821 . . . . 5 (𝑥𝐵, 𝑦𝐴 ↦ ((𝐴 ·o 𝑥) +o 𝑦)) = (𝑥𝐵, 𝑦𝐴 ↦ ((𝐴 ·o 𝑥) +o 𝑦))
65omxpenlem 8618 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑥𝐵, 𝑦𝐴 ↦ ((𝐴 ·o 𝑥) +o 𝑦)):(𝐵 × 𝐴)–1-1-onto→(𝐴 ·o 𝐵))
7 f1oen2g 8526 . . . 4 (((𝐵 × 𝐴) ∈ V ∧ (𝐴 ·o 𝐵) ∈ On ∧ (𝑥𝐵, 𝑦𝐴 ↦ ((𝐴 ·o 𝑥) +o 𝑦)):(𝐵 × 𝐴)–1-1-onto→(𝐴 ·o 𝐵)) → (𝐵 × 𝐴) ≈ (𝐴 ·o 𝐵))
83, 4, 6, 7syl3anc 1367 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 × 𝐴) ≈ (𝐴 ·o 𝐵))
9 entr 8561 . . 3 (((𝐴 × 𝐵) ≈ (𝐵 × 𝐴) ∧ (𝐵 × 𝐴) ≈ (𝐴 ·o 𝐵)) → (𝐴 × 𝐵) ≈ (𝐴 ·o 𝐵))
101, 8, 9syl2anc 586 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 × 𝐵) ≈ (𝐴 ·o 𝐵))
1110ensymd 8560 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ≈ (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wcel 2114  Vcvv 3494   class class class wbr 5066   × cxp 5553  Oncon0 6191  1-1-ontowf1o 6354  (class class class)co 7156  cmpo 7158   +o coa 8099   ·o comu 8100  cen 8506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-omul 8107  df-er 8289  df-en 8510
This theorem is referenced by:  xpnum  9380  infxpenc2  9448
  Copyright terms: Public domain W3C validator