MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opeliunxp2 Structured version   Visualization version   GIF version

Theorem opeliunxp2 5170
Description: Membership in a union of Cartesian products. (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypothesis
Ref Expression
opeliunxp2.1 (𝑥 = 𝐶𝐵 = 𝐸)
Assertion
Ref Expression
opeliunxp2 (⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝐶𝐴𝐷𝐸))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐷   𝑥,𝐸   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem opeliunxp2
StepHypRef Expression
1 df-br 4578 . . 3 (𝐶 𝑥𝐴 ({𝑥} × 𝐵)𝐷 ↔ ⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵))
2 relxp 5139 . . . . . 6 Rel ({𝑥} × 𝐵)
32rgenw 2907 . . . . 5 𝑥𝐴 Rel ({𝑥} × 𝐵)
4 reliun 5151 . . . . 5 (Rel 𝑥𝐴 ({𝑥} × 𝐵) ↔ ∀𝑥𝐴 Rel ({𝑥} × 𝐵))
53, 4mpbir 219 . . . 4 Rel 𝑥𝐴 ({𝑥} × 𝐵)
65brrelexi 5072 . . 3 (𝐶 𝑥𝐴 ({𝑥} × 𝐵)𝐷𝐶 ∈ V)
71, 6sylbir 223 . 2 (⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) → 𝐶 ∈ V)
8 elex 3184 . . 3 (𝐶𝐴𝐶 ∈ V)
98adantr 479 . 2 ((𝐶𝐴𝐷𝐸) → 𝐶 ∈ V)
10 nfiu1 4480 . . . . 5 𝑥 𝑥𝐴 ({𝑥} × 𝐵)
1110nfel2 2766 . . . 4 𝑥𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵)
12 nfv 1829 . . . 4 𝑥(𝐶𝐴𝐷𝐸)
1311, 12nfbi 1820 . . 3 𝑥(⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝐶𝐴𝐷𝐸))
14 opeq1 4334 . . . . 5 (𝑥 = 𝐶 → ⟨𝑥, 𝐷⟩ = ⟨𝐶, 𝐷⟩)
1514eleq1d 2671 . . . 4 (𝑥 = 𝐶 → (⟨𝑥, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ ⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵)))
16 eleq1 2675 . . . . 5 (𝑥 = 𝐶 → (𝑥𝐴𝐶𝐴))
17 opeliunxp2.1 . . . . . 6 (𝑥 = 𝐶𝐵 = 𝐸)
1817eleq2d 2672 . . . . 5 (𝑥 = 𝐶 → (𝐷𝐵𝐷𝐸))
1916, 18anbi12d 742 . . . 4 (𝑥 = 𝐶 → ((𝑥𝐴𝐷𝐵) ↔ (𝐶𝐴𝐷𝐸)))
2015, 19bibi12d 333 . . 3 (𝑥 = 𝐶 → ((⟨𝑥, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝑥𝐴𝐷𝐵)) ↔ (⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝐶𝐴𝐷𝐸))))
21 opeliunxp 5083 . . 3 (⟨𝑥, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝑥𝐴𝐷𝐵))
2213, 20, 21vtoclg1f 3237 . 2 (𝐶 ∈ V → (⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝐶𝐴𝐷𝐸)))
237, 9, 22pm5.21nii 366 1 (⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝐶𝐴𝐷𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976  wral 2895  Vcvv 3172  {csn 4124  cop 4130   ciun 4449   class class class wbr 4577   × cxp 5026  Rel wrel 5033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pr 4828
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-sn 4125  df-pr 4127  df-op 4131  df-iun 4451  df-br 4578  df-opab 4638  df-xp 5034  df-rel 5035
This theorem is referenced by:  mpt2xopn0yelv  7203  mpt2xopxnop0  7205  eldmcoa  16484  dmdprd  18166  ply1frcl  19450  cnextfres  21625  eldv  23385  perfdvf  23390  eltayl  23835  dfcnv2  28665  cvmliftlem1  30327  filnetlem3  31351
  Copyright terms: Public domain W3C validator