Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclssidN Structured version   Visualization version   GIF version

Theorem pclssidN 37046
Description: A set of atoms is included in its projective subspace closure. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclss.a 𝐴 = (Atoms‘𝐾)
pclss.c 𝑈 = (PCl‘𝐾)
Assertion
Ref Expression
pclssidN ((𝐾𝑉𝑋𝐴) → 𝑋 ⊆ (𝑈𝑋))

Proof of Theorem pclssidN
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssintub 4894 . 2 𝑋 {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑋𝑦}
2 pclss.a . . 3 𝐴 = (Atoms‘𝐾)
3 eqid 2821 . . 3 (PSubSp‘𝐾) = (PSubSp‘𝐾)
4 pclss.c . . 3 𝑈 = (PCl‘𝐾)
52, 3, 4pclvalN 37041 . 2 ((𝐾𝑉𝑋𝐴) → (𝑈𝑋) = {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑋𝑦})
61, 5sseqtrrid 4020 1 ((𝐾𝑉𝑋𝐴) → 𝑋 ⊆ (𝑈𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  {crab 3142  wss 3936   cint 4876  cfv 6355  Atomscatm 36414  PSubSpcpsubsp 36647  PClcpclN 37038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-psubsp 36654  df-pclN 37039
This theorem is referenced by:  pclunN  37049  pcl0bN  37074  pclfinclN  37101
  Copyright terms: Public domain W3C validator