Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclssidN Structured version   Visualization version   GIF version

Theorem pclssidN 35684
 Description: A set of atoms is included in its projective subspace closure. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclss.a 𝐴 = (Atoms‘𝐾)
pclss.c 𝑈 = (PCl‘𝐾)
Assertion
Ref Expression
pclssidN ((𝐾𝑉𝑋𝐴) → 𝑋 ⊆ (𝑈𝑋))

Proof of Theorem pclssidN
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssintub 4647 . 2 𝑋 {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑋𝑦}
2 pclss.a . . 3 𝐴 = (Atoms‘𝐾)
3 eqid 2760 . . 3 (PSubSp‘𝐾) = (PSubSp‘𝐾)
4 pclss.c . . 3 𝑈 = (PCl‘𝐾)
52, 3, 4pclvalN 35679 . 2 ((𝐾𝑉𝑋𝐴) → (𝑈𝑋) = {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑋𝑦})
61, 5syl5sseqr 3795 1 ((𝐾𝑉𝑋𝐴) → 𝑋 ⊆ (𝑈𝑋))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1632   ∈ wcel 2139  {crab 3054   ⊆ wss 3715  ∩ cint 4627  ‘cfv 6049  Atomscatm 35053  PSubSpcpsubsp 35285  PClcpclN 35676 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6816  df-psubsp 35292  df-pclN 35677 This theorem is referenced by:  pclunN  35687  pcl0bN  35712  pclfinclN  35739
 Copyright terms: Public domain W3C validator