![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rankbnd2 | Structured version Visualization version GIF version |
Description: The rank of a set is bounded by the successor of a bound for its members. (Contributed by NM, 15-Sep-2006.) |
Ref | Expression |
---|---|
rankr1b.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
rankbnd2 | ⊢ (𝐵 ∈ On → (∀𝑥 ∈ 𝐴 (rank‘𝑥) ⊆ 𝐵 ↔ (rank‘𝐴) ⊆ suc 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rankuni 8895 | . . . . 5 ⊢ (rank‘∪ 𝐴) = ∪ (rank‘𝐴) | |
2 | rankr1b.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
3 | 2 | rankuni2 8887 | . . . . 5 ⊢ (rank‘∪ 𝐴) = ∪ 𝑥 ∈ 𝐴 (rank‘𝑥) |
4 | 1, 3 | eqtr3i 2780 | . . . 4 ⊢ ∪ (rank‘𝐴) = ∪ 𝑥 ∈ 𝐴 (rank‘𝑥) |
5 | 4 | sseq1i 3766 | . . 3 ⊢ (∪ (rank‘𝐴) ⊆ 𝐵 ↔ ∪ 𝑥 ∈ 𝐴 (rank‘𝑥) ⊆ 𝐵) |
6 | iunss 4709 | . . 3 ⊢ (∪ 𝑥 ∈ 𝐴 (rank‘𝑥) ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (rank‘𝑥) ⊆ 𝐵) | |
7 | 5, 6 | bitr2i 265 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (rank‘𝑥) ⊆ 𝐵 ↔ ∪ (rank‘𝐴) ⊆ 𝐵) |
8 | rankon 8827 | . . . 4 ⊢ (rank‘𝐴) ∈ On | |
9 | 8 | onssi 7198 | . . 3 ⊢ (rank‘𝐴) ⊆ On |
10 | eloni 5890 | . . 3 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
11 | ordunisssuc 5987 | . . 3 ⊢ (((rank‘𝐴) ⊆ On ∧ Ord 𝐵) → (∪ (rank‘𝐴) ⊆ 𝐵 ↔ (rank‘𝐴) ⊆ suc 𝐵)) | |
12 | 9, 10, 11 | sylancr 698 | . 2 ⊢ (𝐵 ∈ On → (∪ (rank‘𝐴) ⊆ 𝐵 ↔ (rank‘𝐴) ⊆ suc 𝐵)) |
13 | 7, 12 | syl5bb 272 | 1 ⊢ (𝐵 ∈ On → (∀𝑥 ∈ 𝐴 (rank‘𝑥) ⊆ 𝐵 ↔ (rank‘𝐴) ⊆ suc 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∈ wcel 2135 ∀wral 3046 Vcvv 3336 ⊆ wss 3711 ∪ cuni 4584 ∪ ciun 4668 Ord word 5879 Oncon0 5880 suc csuc 5882 ‘cfv 6045 rankcrnk 8795 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-8 2137 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 ax-rep 4919 ax-sep 4929 ax-nul 4937 ax-pow 4988 ax-pr 5051 ax-un 7110 ax-reg 8658 ax-inf2 8707 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1631 df-ex 1850 df-nf 1855 df-sb 2043 df-eu 2607 df-mo 2608 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-ne 2929 df-ral 3051 df-rex 3052 df-reu 3053 df-rab 3055 df-v 3338 df-sbc 3573 df-csb 3671 df-dif 3714 df-un 3716 df-in 3718 df-ss 3725 df-pss 3727 df-nul 4055 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4585 df-int 4624 df-iun 4670 df-br 4801 df-opab 4861 df-mpt 4878 df-tr 4901 df-id 5170 df-eprel 5175 df-po 5183 df-so 5184 df-fr 5221 df-we 5223 df-xp 5268 df-rel 5269 df-cnv 5270 df-co 5271 df-dm 5272 df-rn 5273 df-res 5274 df-ima 5275 df-pred 5837 df-ord 5883 df-on 5884 df-lim 5885 df-suc 5886 df-iota 6008 df-fun 6047 df-fn 6048 df-f 6049 df-f1 6050 df-fo 6051 df-f1o 6052 df-fv 6053 df-om 7227 df-wrecs 7572 df-recs 7633 df-rdg 7671 df-r1 8796 df-rank 8797 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |