Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  renegneg Structured version   Visualization version   GIF version

Theorem renegneg 39290
Description: A real number is equal to the negative of its negative. Compare negneg 10936. (Contributed by SN, 13-Feb-2024.)
Assertion
Ref Expression
renegneg (𝐴 ∈ ℝ → (0 − (0 − 𝐴)) = 𝐴)

Proof of Theorem renegneg
StepHypRef Expression
1 rernegcl 39250 . . 3 (𝐴 ∈ ℝ → (0 − 𝐴) ∈ ℝ)
2 rernegcl 39250 . . 3 ((0 − 𝐴) ∈ ℝ → (0 − (0 − 𝐴)) ∈ ℝ)
31, 2syl 17 . 2 (𝐴 ∈ ℝ → (0 − (0 − 𝐴)) ∈ ℝ)
4 id 22 . 2 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
5 renegid 39252 . . 3 (𝐴 ∈ ℝ → (𝐴 + (0 − 𝐴)) = 0)
6 elre0re 39203 . . 3 (𝐴 ∈ ℝ → 0 ∈ ℝ)
75, 6eqeltrd 2913 . 2 (𝐴 ∈ ℝ → (𝐴 + (0 − 𝐴)) ∈ ℝ)
8 readdid1 39288 . . . 4 (𝐴 ∈ ℝ → (𝐴 + 0) = 𝐴)
9 repncan3 39262 . . . . . 6 (((0 − 𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → ((0 − 𝐴) + (0 − (0 − 𝐴))) = 0)
101, 6, 9syl2anc 586 . . . . 5 (𝐴 ∈ ℝ → ((0 − 𝐴) + (0 − (0 − 𝐴))) = 0)
1110oveq2d 7172 . . . 4 (𝐴 ∈ ℝ → (𝐴 + ((0 − 𝐴) + (0 − (0 − 𝐴)))) = (𝐴 + 0))
12 readdid2 39282 . . . 4 (𝐴 ∈ ℝ → (0 + 𝐴) = 𝐴)
138, 11, 123eqtr4d 2866 . . 3 (𝐴 ∈ ℝ → (𝐴 + ((0 − 𝐴) + (0 − (0 − 𝐴)))) = (0 + 𝐴))
14 recn 10627 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
151recnd 10669 . . . 4 (𝐴 ∈ ℝ → (0 − 𝐴) ∈ ℂ)
163recnd 10669 . . . 4 (𝐴 ∈ ℝ → (0 − (0 − 𝐴)) ∈ ℂ)
1714, 15, 16addassd 10663 . . 3 (𝐴 ∈ ℝ → ((𝐴 + (0 − 𝐴)) + (0 − (0 − 𝐴))) = (𝐴 + ((0 − 𝐴) + (0 − (0 − 𝐴)))))
185oveq1d 7171 . . 3 (𝐴 ∈ ℝ → ((𝐴 + (0 − 𝐴)) + 𝐴) = (0 + 𝐴))
1913, 17, 183eqtr4d 2866 . 2 (𝐴 ∈ ℝ → ((𝐴 + (0 − 𝐴)) + (0 − (0 − 𝐴))) = ((𝐴 + (0 − 𝐴)) + 𝐴))
20 readdcan 10814 . . 3 (((0 − (0 − 𝐴)) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐴 + (0 − 𝐴)) ∈ ℝ) → (((𝐴 + (0 − 𝐴)) + (0 − (0 − 𝐴))) = ((𝐴 + (0 − 𝐴)) + 𝐴) ↔ (0 − (0 − 𝐴)) = 𝐴))
2120biimpa 479 . 2 ((((0 − (0 − 𝐴)) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐴 + (0 − 𝐴)) ∈ ℝ) ∧ ((𝐴 + (0 − 𝐴)) + (0 − (0 − 𝐴))) = ((𝐴 + (0 − 𝐴)) + 𝐴)) → (0 − (0 − 𝐴)) = 𝐴)
223, 4, 7, 19, 21syl31anc 1369 1 (𝐴 ∈ ℝ → (0 − (0 − 𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1083   = wceq 1537  wcel 2114  (class class class)co 7156  cr 10536  0cc0 10537   + caddc 10540   cresub 39244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-ltxr 10680  df-2 11701  df-3 11702  df-resub 39245
This theorem is referenced by:  sn-0lt1  39295
  Copyright terms: Public domain W3C validator