![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resfifsupp | Structured version Visualization version GIF version |
Description: The restriction of a function to a finite set is finitely supported. (Contributed by AV, 12-Dec-2019.) |
Ref | Expression |
---|---|
resfifsupp.f | ⊢ (𝜑 → Fun 𝐹) |
resfifsupp.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
resfifsupp.z | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
Ref | Expression |
---|---|
resfifsupp | ⊢ (𝜑 → (𝐹 ↾ 𝑋) finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resfifsupp.f | . . . 4 ⊢ (𝜑 → Fun 𝐹) | |
2 | funrel 5943 | . . . 4 ⊢ (Fun 𝐹 → Rel 𝐹) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → Rel 𝐹) |
4 | resindm 5479 | . . 3 ⊢ (Rel 𝐹 → (𝐹 ↾ (𝑋 ∩ dom 𝐹)) = (𝐹 ↾ 𝑋)) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → (𝐹 ↾ (𝑋 ∩ dom 𝐹)) = (𝐹 ↾ 𝑋)) |
6 | funfn 5956 | . . . . 5 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
7 | 1, 6 | sylib 208 | . . . 4 ⊢ (𝜑 → 𝐹 Fn dom 𝐹) |
8 | fnresin2 6044 | . . . 4 ⊢ (𝐹 Fn dom 𝐹 → (𝐹 ↾ (𝑋 ∩ dom 𝐹)) Fn (𝑋 ∩ dom 𝐹)) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹 ↾ (𝑋 ∩ dom 𝐹)) Fn (𝑋 ∩ dom 𝐹)) |
10 | resfifsupp.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
11 | infi 8225 | . . . 4 ⊢ (𝑋 ∈ Fin → (𝑋 ∩ dom 𝐹) ∈ Fin) | |
12 | 10, 11 | syl 17 | . . 3 ⊢ (𝜑 → (𝑋 ∩ dom 𝐹) ∈ Fin) |
13 | resfifsupp.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
14 | 9, 12, 13 | fndmfifsupp 8329 | . 2 ⊢ (𝜑 → (𝐹 ↾ (𝑋 ∩ dom 𝐹)) finSupp 𝑍) |
15 | 5, 14 | eqbrtrrd 4709 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝑋) finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∈ wcel 2030 ∩ cin 3606 class class class wbr 4685 dom cdm 5143 ↾ cres 5145 Rel wrel 5148 Fun wfun 5920 Fn wfn 5921 Fincfn 7997 finSupp cfsupp 8316 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-supp 7341 df-er 7787 df-en 7998 df-fin 8001 df-fsupp 8317 |
This theorem is referenced by: xrge0tsmsd 29913 |
Copyright terms: Public domain | W3C validator |