![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexn0 | Structured version Visualization version GIF version |
Description: Restricted existential quantification implies its restriction is nonempty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.) |
Ref | Expression |
---|---|
rexn0 | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝐴 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i 4064 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝐴 ≠ ∅) | |
2 | 1 | a1d 25 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝐴 ≠ ∅)) |
3 | 2 | rexlimiv 3165 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝐴 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2139 ≠ wne 2932 ∃wrex 3051 ∅c0 4058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-v 3342 df-dif 3718 df-nul 4059 |
This theorem is referenced by: reusv2lem3 5020 eusvobj2 6806 isdrs2 17140 ismnd 17498 slwn0 18230 lbsexg 19366 iunconn 21433 grpon0 27665 filbcmb 33848 isbnd2 33895 rencldnfi 37887 iunconnlem2 39670 stoweidlem14 40734 hoidmvval0 41307 2reu4 41696 |
Copyright terms: Public domain | W3C validator |