Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  filbcmb Structured version   Visualization version   GIF version

Theorem filbcmb 33665
Description: Combine a finite set of lower bounds. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
filbcmb ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) → (∀𝑥𝐴𝑦𝐵𝑧𝐵 (𝑦𝑧𝜑) → ∃𝑦𝐵𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑)))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑧)

Proof of Theorem filbcmb
Dummy variables 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 10065 . . . . 5 ℝ ∈ V
21ssex 4835 . . . 4 (𝐵 ⊆ ℝ → 𝐵 ∈ V)
3 indexfi 8315 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ V ∧ ∀𝑥𝐴𝑦𝐵𝑧𝐵 (𝑦𝑧𝜑)) → ∃𝑤 ∈ Fin (𝑤𝐵 ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ∧ ∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑)))
433expia 1286 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ V) → (∀𝑥𝐴𝑦𝐵𝑧𝐵 (𝑦𝑧𝜑) → ∃𝑤 ∈ Fin (𝑤𝐵 ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ∧ ∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑))))
52, 4sylan2 490 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ⊆ ℝ) → (∀𝑥𝐴𝑦𝐵𝑧𝐵 (𝑦𝑧𝜑) → ∃𝑤 ∈ Fin (𝑤𝐵 ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ∧ ∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑))))
653adant2 1100 . 2 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) → (∀𝑥𝐴𝑦𝐵𝑧𝐵 (𝑦𝑧𝜑) → ∃𝑤 ∈ Fin (𝑤𝐵 ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ∧ ∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑))))
7 r19.2z 4093 . . . . . . . . . . . 12 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)) → ∃𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑))
8 rexn0 4107 . . . . . . . . . . . . 13 (∃𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) → 𝑤 ≠ ∅)
98rexlimivw 3058 . . . . . . . . . . . 12 (∃𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) → 𝑤 ≠ ∅)
107, 9syl 17 . . . . . . . . . . 11 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)) → 𝑤 ≠ ∅)
1110ex 449 . . . . . . . . . 10 (𝐴 ≠ ∅ → (∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) → 𝑤 ≠ ∅))
12113ad2ant2 1103 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) → (∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) → 𝑤 ≠ ∅))
1312ad2antrr 762 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) ∧ 𝑤 ∈ Fin) ∧ 𝑤𝐵) → (∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) → 𝑤 ≠ ∅))
14 sstr 3644 . . . . . . . . . . . . . 14 ((𝑤𝐵𝐵 ⊆ ℝ) → 𝑤 ⊆ ℝ)
1514ancoms 468 . . . . . . . . . . . . 13 ((𝐵 ⊆ ℝ ∧ 𝑤𝐵) → 𝑤 ⊆ ℝ)
16 fimaxre 11006 . . . . . . . . . . . . . 14 ((𝑤 ⊆ ℝ ∧ 𝑤 ∈ Fin ∧ 𝑤 ≠ ∅) → ∃𝑦𝑤𝑢𝑤 𝑢𝑦)
17163expia 1286 . . . . . . . . . . . . 13 ((𝑤 ⊆ ℝ ∧ 𝑤 ∈ Fin) → (𝑤 ≠ ∅ → ∃𝑦𝑤𝑢𝑤 𝑢𝑦))
1815, 17sylan 487 . . . . . . . . . . . 12 (((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ 𝑤 ∈ Fin) → (𝑤 ≠ ∅ → ∃𝑦𝑤𝑢𝑤 𝑢𝑦))
1918anasss 680 . . . . . . . . . . 11 ((𝐵 ⊆ ℝ ∧ (𝑤𝐵𝑤 ∈ Fin)) → (𝑤 ≠ ∅ → ∃𝑦𝑤𝑢𝑤 𝑢𝑦))
2019ancom2s 861 . . . . . . . . . 10 ((𝐵 ⊆ ℝ ∧ (𝑤 ∈ Fin ∧ 𝑤𝐵)) → (𝑤 ≠ ∅ → ∃𝑦𝑤𝑢𝑤 𝑢𝑦))
21203ad2antl3 1245 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) ∧ (𝑤 ∈ Fin ∧ 𝑤𝐵)) → (𝑤 ≠ ∅ → ∃𝑦𝑤𝑢𝑤 𝑢𝑦))
2221anassrs 681 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) ∧ 𝑤 ∈ Fin) ∧ 𝑤𝐵) → (𝑤 ≠ ∅ → ∃𝑦𝑤𝑢𝑤 𝑢𝑦))
2313, 22syld 47 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) ∧ 𝑤 ∈ Fin) ∧ 𝑤𝐵) → (∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) → ∃𝑦𝑤𝑢𝑤 𝑢𝑦))
2423a1dd 50 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) ∧ 𝑤 ∈ Fin) ∧ 𝑤𝐵) → (∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) → (∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑) → ∃𝑦𝑤𝑢𝑤 𝑢𝑦)))
2524ex 449 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) ∧ 𝑤 ∈ Fin) → (𝑤𝐵 → (∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) → (∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑) → ∃𝑦𝑤𝑢𝑤 𝑢𝑦))))
26253impd 1303 . . . 4 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) ∧ 𝑤 ∈ Fin) → ((𝑤𝐵 ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ∧ ∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑)) → ∃𝑦𝑤𝑢𝑤 𝑢𝑦))
27 nfv 1883 . . . . . . . . . . . 12 𝑦(𝐵 ⊆ ℝ ∧ 𝑤𝐵)
28 nfcv 2793 . . . . . . . . . . . . 13 𝑦𝐴
29 nfre1 3034 . . . . . . . . . . . . 13 𝑦𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)
3028, 29nfral 2974 . . . . . . . . . . . 12 𝑦𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)
3127, 30nfan 1868 . . . . . . . . . . 11 𝑦((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑))
32 nfv 1883 . . . . . . . . . . . . . . 15 𝑧(𝐵 ⊆ ℝ ∧ 𝑤𝐵)
33 nfcv 2793 . . . . . . . . . . . . . . . 16 𝑧𝐴
34 nfcv 2793 . . . . . . . . . . . . . . . . 17 𝑧𝑤
35 nfra1 2970 . . . . . . . . . . . . . . . . 17 𝑧𝑧𝐵 (𝑦𝑧𝜑)
3634, 35nfrex 3036 . . . . . . . . . . . . . . . 16 𝑧𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)
3733, 36nfral 2974 . . . . . . . . . . . . . . 15 𝑧𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)
3832, 37nfan 1868 . . . . . . . . . . . . . 14 𝑧((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑))
39 nfv 1883 . . . . . . . . . . . . . 14 𝑧(𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)
4038, 39nfan 1868 . . . . . . . . . . . . 13 𝑧(((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦))
41 breq1 4688 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑣 → (𝑦𝑧𝑣𝑧))
4241imbi1d 330 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑣 → ((𝑦𝑧𝜑) ↔ (𝑣𝑧𝜑)))
4342ralbidv 3015 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑣 → (∀𝑧𝐵 (𝑦𝑧𝜑) ↔ ∀𝑧𝐵 (𝑣𝑧𝜑)))
4443cbvrexv 3202 . . . . . . . . . . . . . . . . . . 19 (∃𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ↔ ∃𝑣𝑤𝑧𝐵 (𝑣𝑧𝜑))
45 rsp 2958 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑧𝐵 (𝑣𝑧𝜑) → (𝑧𝐵 → (𝑣𝑧𝜑)))
46 ssel2 3631 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑤𝐵𝑣𝑤) → 𝑣𝐵)
47 ssel2 3631 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐵 ⊆ ℝ ∧ 𝑣𝐵) → 𝑣 ∈ ℝ)
4846, 47sylan2 490 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 ⊆ ℝ ∧ (𝑤𝐵𝑣𝑤)) → 𝑣 ∈ ℝ)
4948anassrs 681 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ 𝑣𝑤) → 𝑣 ∈ ℝ)
5049adantlr 751 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ 𝑣𝑤) → 𝑣 ∈ ℝ)
5150adantlr 751 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) ∧ 𝑣𝑤) → 𝑣 ∈ ℝ)
52 ssel2 3631 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑤𝐵𝑦𝑤) → 𝑦𝐵)
53 ssel2 3631 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐵 ⊆ ℝ ∧ 𝑦𝐵) → 𝑦 ∈ ℝ)
5452, 53sylan2 490 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 ⊆ ℝ ∧ (𝑤𝐵𝑦𝑤)) → 𝑦 ∈ ℝ)
5554anassrs 681 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ 𝑦𝑤) → 𝑦 ∈ ℝ)
5655adantrr 753 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) → 𝑦 ∈ ℝ)
5756ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) ∧ 𝑣𝑤) → 𝑦 ∈ ℝ)
58 ssel2 3631 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 ⊆ ℝ ∧ 𝑧𝐵) → 𝑧 ∈ ℝ)
5958adantlr 751 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ 𝑧𝐵) → 𝑧 ∈ ℝ)
6059ad2ant2r 798 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) → 𝑧 ∈ ℝ)
6160adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) ∧ 𝑣𝑤) → 𝑧 ∈ ℝ)
62 breq1 4688 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑢 = 𝑣 → (𝑢𝑦𝑣𝑦))
6362rspccva 3339 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((∀𝑢𝑤 𝑢𝑦𝑣𝑤) → 𝑣𝑦)
6463adantll 750 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦) ∧ 𝑣𝑤) → 𝑣𝑦)
6564adantll 750 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ 𝑣𝑤) → 𝑣𝑦)
6665adantlr 751 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) ∧ 𝑣𝑤) → 𝑣𝑦)
67 simplrr 818 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) ∧ 𝑣𝑤) → 𝑦𝑧)
6851, 57, 61, 66, 67letrd 10232 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) ∧ 𝑣𝑤) → 𝑣𝑧)
69 pm2.27 42 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧𝐵 → ((𝑧𝐵 → (𝑣𝑧𝜑)) → (𝑣𝑧𝜑)))
7069adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧𝐵𝑦𝑧) → ((𝑧𝐵 → (𝑣𝑧𝜑)) → (𝑣𝑧𝜑)))
7170ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) ∧ 𝑣𝑤) → ((𝑧𝐵 → (𝑣𝑧𝜑)) → (𝑣𝑧𝜑)))
7268, 71mpid 44 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) ∧ 𝑣𝑤) → ((𝑧𝐵 → (𝑣𝑧𝜑)) → 𝜑))
7345, 72syl5 34 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) ∧ 𝑣𝑤) → (∀𝑧𝐵 (𝑣𝑧𝜑) → 𝜑))
7473adantlr 751 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) ∧ 𝑥𝐴) ∧ 𝑣𝑤) → (∀𝑧𝐵 (𝑣𝑧𝜑) → 𝜑))
7574rexlimdva 3060 . . . . . . . . . . . . . . . . . . 19 (((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) ∧ 𝑥𝐴) → (∃𝑣𝑤𝑧𝐵 (𝑣𝑧𝜑) → 𝜑))
7644, 75syl5bi 232 . . . . . . . . . . . . . . . . . 18 (((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) ∧ 𝑥𝐴) → (∃𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) → 𝜑))
7776ralimdva 2991 . . . . . . . . . . . . . . . . 17 ((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) → (∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) → ∀𝑥𝐴 𝜑))
7877imp 444 . . . . . . . . . . . . . . . 16 (((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ (𝑧𝐵𝑦𝑧)) ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)) → ∀𝑥𝐴 𝜑)
7978an32s 863 . . . . . . . . . . . . . . 15 (((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)) ∧ (𝑧𝐵𝑦𝑧)) → ∀𝑥𝐴 𝜑)
8079exp32 630 . . . . . . . . . . . . . 14 ((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)) → (𝑧𝐵 → (𝑦𝑧 → ∀𝑥𝐴 𝜑)))
8180an32s 863 . . . . . . . . . . . . 13 ((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) → (𝑧𝐵 → (𝑦𝑧 → ∀𝑥𝐴 𝜑)))
8240, 81ralrimi 2986 . . . . . . . . . . . 12 ((((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)) ∧ (𝑦𝑤 ∧ ∀𝑢𝑤 𝑢𝑦)) → ∀𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑))
8382exp32 630 . . . . . . . . . . 11 (((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)) → (𝑦𝑤 → (∀𝑢𝑤 𝑢𝑦 → ∀𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑))))
8431, 83reximdai 3041 . . . . . . . . . 10 (((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑)) → (∃𝑦𝑤𝑢𝑤 𝑢𝑦 → ∃𝑦𝑤𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑)))
8584adantrr 753 . . . . . . . . 9 (((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ∧ ∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑))) → (∃𝑦𝑤𝑢𝑤 𝑢𝑦 → ∃𝑦𝑤𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑)))
86 ssrexv 3700 . . . . . . . . . 10 (𝑤𝐵 → (∃𝑦𝑤𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑) → ∃𝑦𝐵𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑)))
8786ad2antlr 763 . . . . . . . . 9 (((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ∧ ∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑))) → (∃𝑦𝑤𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑) → ∃𝑦𝐵𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑)))
8885, 87syld 47 . . . . . . . 8 (((𝐵 ⊆ ℝ ∧ 𝑤𝐵) ∧ (∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ∧ ∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑))) → (∃𝑦𝑤𝑢𝑤 𝑢𝑦 → ∃𝑦𝐵𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑)))
8988exp43 639 . . . . . . 7 (𝐵 ⊆ ℝ → (𝑤𝐵 → (∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) → (∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑) → (∃𝑦𝑤𝑢𝑤 𝑢𝑦 → ∃𝑦𝐵𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑))))))
90893impd 1303 . . . . . 6 (𝐵 ⊆ ℝ → ((𝑤𝐵 ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ∧ ∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑)) → (∃𝑦𝑤𝑢𝑤 𝑢𝑦 → ∃𝑦𝐵𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑))))
91903ad2ant3 1104 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) → ((𝑤𝐵 ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ∧ ∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑)) → (∃𝑦𝑤𝑢𝑤 𝑢𝑦 → ∃𝑦𝐵𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑))))
9291adantr 480 . . . 4 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) ∧ 𝑤 ∈ Fin) → ((𝑤𝐵 ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ∧ ∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑)) → (∃𝑦𝑤𝑢𝑤 𝑢𝑦 → ∃𝑦𝐵𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑))))
9326, 92mpdd 43 . . 3 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) ∧ 𝑤 ∈ Fin) → ((𝑤𝐵 ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ∧ ∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑)) → ∃𝑦𝐵𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑)))
9493rexlimdva 3060 . 2 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) → (∃𝑤 ∈ Fin (𝑤𝐵 ∧ ∀𝑥𝐴𝑦𝑤𝑧𝐵 (𝑦𝑧𝜑) ∧ ∀𝑦𝑤𝑥𝐴𝑧𝐵 (𝑦𝑧𝜑)) → ∃𝑦𝐵𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑)))
956, 94syld 47 1 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ) → (∀𝑥𝐴𝑦𝐵𝑧𝐵 (𝑦𝑧𝜑) → ∃𝑦𝐵𝑧𝐵 (𝑦𝑧 → ∀𝑥𝐴 𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054  wcel 2030  wne 2823  wral 2941  wrex 2942  Vcvv 3231  wss 3607  c0 3948   class class class wbr 4685  Fincfn 7997  cr 9973  cle 10113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-pre-lttri 10048  ax-pre-lttrn 10049
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-om 7108  df-1o 7605  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator