Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnxpid Structured version   Visualization version   GIF version

Theorem rnxpid 5555
 Description: The range of a square Cartesian product. (Contributed by FL, 17-May-2010.)
Assertion
Ref Expression
rnxpid ran (𝐴 × 𝐴) = 𝐴

Proof of Theorem rnxpid
StepHypRef Expression
1 rn0 5366 . . 3 ran ∅ = ∅
2 xpeq2 5119 . . . . 5 (𝐴 = ∅ → (𝐴 × 𝐴) = (𝐴 × ∅))
3 xp0 5540 . . . . 5 (𝐴 × ∅) = ∅
42, 3syl6eq 2670 . . . 4 (𝐴 = ∅ → (𝐴 × 𝐴) = ∅)
54rneqd 5342 . . 3 (𝐴 = ∅ → ran (𝐴 × 𝐴) = ran ∅)
6 id 22 . . 3 (𝐴 = ∅ → 𝐴 = ∅)
71, 5, 63eqtr4a 2680 . 2 (𝐴 = ∅ → ran (𝐴 × 𝐴) = 𝐴)
8 rnxp 5552 . 2 (𝐴 ≠ ∅ → ran (𝐴 × 𝐴) = 𝐴)
97, 8pm2.61ine 2874 1 ran (𝐴 × 𝐴) = 𝐴
 Colors of variables: wff setvar class Syntax hints:   = wceq 1481  ∅c0 3907   × cxp 5102  ran crn 5105 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pr 4897 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rab 2918  df-v 3197  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-sn 4169  df-pr 4171  df-op 4175  df-br 4645  df-opab 4704  df-xp 5110  df-rel 5111  df-cnv 5112  df-dm 5114  df-rn 5115 This theorem is referenced by:  sofld  5569  fpwwe2lem13  9449  ustimasn  22013  utopbas  22020  restutop  22022  ovoliunlem1  23251  metideq  29910  poimirlem3  33383  mblfinlem1  33417  rtrclex  37743
 Copyright terms: Public domain W3C validator