Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metideq Structured version   Visualization version   GIF version

Theorem metideq 29715
Description: Basic property of the metric identification relation. (Contributed by Thierry Arnoux, 7-Feb-2018.)
Assertion
Ref Expression
metideq ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐴𝐷𝐸) = (𝐵𝐷𝐹))

Proof of Theorem metideq
StepHypRef Expression
1 simpl 473 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → 𝐷 ∈ (PsMet‘𝑋))
2 metidss 29713 . . . . . . . . 9 (𝐷 ∈ (PsMet‘𝑋) → (~Met𝐷) ⊆ (𝑋 × 𝑋))
3 dmss 5283 . . . . . . . . 9 ((~Met𝐷) ⊆ (𝑋 × 𝑋) → dom (~Met𝐷) ⊆ dom (𝑋 × 𝑋))
42, 3syl 17 . . . . . . . 8 (𝐷 ∈ (PsMet‘𝑋) → dom (~Met𝐷) ⊆ dom (𝑋 × 𝑋))
5 dmxpid 5305 . . . . . . . 8 dom (𝑋 × 𝑋) = 𝑋
64, 5syl6sseq 3630 . . . . . . 7 (𝐷 ∈ (PsMet‘𝑋) → dom (~Met𝐷) ⊆ 𝑋)
71, 6syl 17 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → dom (~Met𝐷) ⊆ 𝑋)
8 xpss 5187 . . . . . . . . . 10 (𝑋 × 𝑋) ⊆ (V × V)
92, 8syl6ss 3595 . . . . . . . . 9 (𝐷 ∈ (PsMet‘𝑋) → (~Met𝐷) ⊆ (V × V))
10 df-rel 5081 . . . . . . . . 9 (Rel (~Met𝐷) ↔ (~Met𝐷) ⊆ (V × V))
119, 10sylibr 224 . . . . . . . 8 (𝐷 ∈ (PsMet‘𝑋) → Rel (~Met𝐷))
121, 11syl 17 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → Rel (~Met𝐷))
13 simprl 793 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → 𝐴(~Met𝐷)𝐵)
14 releldm 5318 . . . . . . 7 ((Rel (~Met𝐷) ∧ 𝐴(~Met𝐷)𝐵) → 𝐴 ∈ dom (~Met𝐷))
1512, 13, 14syl2anc 692 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → 𝐴 ∈ dom (~Met𝐷))
167, 15sseldd 3584 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → 𝐴𝑋)
17 simprr 795 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → 𝐸(~Met𝐷)𝐹)
18 releldm 5318 . . . . . . 7 ((Rel (~Met𝐷) ∧ 𝐸(~Met𝐷)𝐹) → 𝐸 ∈ dom (~Met𝐷))
1912, 17, 18syl2anc 692 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → 𝐸 ∈ dom (~Met𝐷))
207, 19sseldd 3584 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → 𝐸𝑋)
21 psmetsym 22025 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐸𝑋) → (𝐴𝐷𝐸) = (𝐸𝐷𝐴))
221, 16, 20, 21syl3anc 1323 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐴𝐷𝐸) = (𝐸𝐷𝐴))
23 psmetf 22021 . . . . . 6 (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
2423fovrnda 6758 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐸𝑋𝐴𝑋)) → (𝐸𝐷𝐴) ∈ ℝ*)
251, 20, 16, 24syl12anc 1321 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐸𝐷𝐴) ∈ ℝ*)
2622, 25eqeltrd 2698 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐴𝐷𝐸) ∈ ℝ*)
27 rnss 5314 . . . . . . . 8 ((~Met𝐷) ⊆ (𝑋 × 𝑋) → ran (~Met𝐷) ⊆ ran (𝑋 × 𝑋))
282, 27syl 17 . . . . . . 7 (𝐷 ∈ (PsMet‘𝑋) → ran (~Met𝐷) ⊆ ran (𝑋 × 𝑋))
29 rnxpid 5526 . . . . . . 7 ran (𝑋 × 𝑋) = 𝑋
3028, 29syl6sseq 3630 . . . . . 6 (𝐷 ∈ (PsMet‘𝑋) → ran (~Met𝐷) ⊆ 𝑋)
311, 30syl 17 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → ran (~Met𝐷) ⊆ 𝑋)
32 relelrn 5319 . . . . . 6 ((Rel (~Met𝐷) ∧ 𝐴(~Met𝐷)𝐵) → 𝐵 ∈ ran (~Met𝐷))
3312, 13, 32syl2anc 692 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → 𝐵 ∈ ran (~Met𝐷))
3431, 33sseldd 3584 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → 𝐵𝑋)
3523fovrnda 6758 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐵𝑋𝐸𝑋)) → (𝐵𝐷𝐸) ∈ ℝ*)
361, 34, 20, 35syl12anc 1321 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐵𝐷𝐸) ∈ ℝ*)
37 relelrn 5319 . . . . . . 7 ((Rel (~Met𝐷) ∧ 𝐸(~Met𝐷)𝐹) → 𝐹 ∈ ran (~Met𝐷))
3812, 17, 37syl2anc 692 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → 𝐹 ∈ ran (~Met𝐷))
3931, 38sseldd 3584 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → 𝐹𝑋)
40 psmetsym 22025 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐹𝑋𝐵𝑋) → (𝐹𝐷𝐵) = (𝐵𝐷𝐹))
411, 39, 34, 40syl3anc 1323 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐹𝐷𝐵) = (𝐵𝐷𝐹))
4223fovrnda 6758 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐹𝑋𝐵𝑋)) → (𝐹𝐷𝐵) ∈ ℝ*)
431, 39, 34, 42syl12anc 1321 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐹𝐷𝐵) ∈ ℝ*)
4441, 43eqeltrrd 2699 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐵𝐷𝐹) ∈ ℝ*)
45 psmettri2 22024 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐵𝑋𝐴𝑋𝐸𝑋)) → (𝐴𝐷𝐸) ≤ ((𝐵𝐷𝐴) +𝑒 (𝐵𝐷𝐸)))
461, 34, 16, 20, 45syl13anc 1325 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐴𝐷𝐸) ≤ ((𝐵𝐷𝐴) +𝑒 (𝐵𝐷𝐸)))
47 psmetsym 22025 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴))
481, 16, 34, 47syl3anc 1323 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴))
4916, 34jca 554 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐴𝑋𝐵𝑋))
50 metidv 29714 . . . . . . . . 9 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐴(~Met𝐷)𝐵 ↔ (𝐴𝐷𝐵) = 0))
5150biimpa 501 . . . . . . . 8 (((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ 𝐴(~Met𝐷)𝐵) → (𝐴𝐷𝐵) = 0)
521, 49, 13, 51syl21anc 1322 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐴𝐷𝐵) = 0)
5348, 52eqtr3d 2657 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐵𝐷𝐴) = 0)
5453oveq1d 6619 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → ((𝐵𝐷𝐴) +𝑒 (𝐵𝐷𝐸)) = (0 +𝑒 (𝐵𝐷𝐸)))
55 xaddid2 12016 . . . . . 6 ((𝐵𝐷𝐸) ∈ ℝ* → (0 +𝑒 (𝐵𝐷𝐸)) = (𝐵𝐷𝐸))
5636, 55syl 17 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (0 +𝑒 (𝐵𝐷𝐸)) = (𝐵𝐷𝐸))
5754, 56eqtrd 2655 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → ((𝐵𝐷𝐴) +𝑒 (𝐵𝐷𝐸)) = (𝐵𝐷𝐸))
5846, 57breqtrd 4639 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐴𝐷𝐸) ≤ (𝐵𝐷𝐸))
59 psmettri2 22024 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐹𝑋𝐵𝑋𝐸𝑋)) → (𝐵𝐷𝐸) ≤ ((𝐹𝐷𝐵) +𝑒 (𝐹𝐷𝐸)))
601, 39, 34, 20, 59syl13anc 1325 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐵𝐷𝐸) ≤ ((𝐹𝐷𝐵) +𝑒 (𝐹𝐷𝐸)))
61 psmetsym 22025 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐹𝑋𝐸𝑋) → (𝐹𝐷𝐸) = (𝐸𝐷𝐹))
621, 39, 20, 61syl3anc 1323 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐹𝐷𝐸) = (𝐸𝐷𝐹))
6320, 39jca 554 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐸𝑋𝐹𝑋))
64 metidv 29714 . . . . . . . . 9 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐸𝑋𝐹𝑋)) → (𝐸(~Met𝐷)𝐹 ↔ (𝐸𝐷𝐹) = 0))
6564biimpa 501 . . . . . . . 8 (((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐸𝑋𝐹𝑋)) ∧ 𝐸(~Met𝐷)𝐹) → (𝐸𝐷𝐹) = 0)
661, 63, 17, 65syl21anc 1322 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐸𝐷𝐹) = 0)
6762, 66eqtrd 2655 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐹𝐷𝐸) = 0)
6867oveq2d 6620 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → ((𝐹𝐷𝐵) +𝑒 (𝐹𝐷𝐸)) = ((𝐹𝐷𝐵) +𝑒 0))
69 xaddid1 12015 . . . . . 6 ((𝐹𝐷𝐵) ∈ ℝ* → ((𝐹𝐷𝐵) +𝑒 0) = (𝐹𝐷𝐵))
7043, 69syl 17 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → ((𝐹𝐷𝐵) +𝑒 0) = (𝐹𝐷𝐵))
7168, 70, 413eqtrd 2659 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → ((𝐹𝐷𝐵) +𝑒 (𝐹𝐷𝐸)) = (𝐵𝐷𝐹))
7260, 71breqtrd 4639 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐵𝐷𝐸) ≤ (𝐵𝐷𝐹))
7326, 36, 44, 58, 72xrletrd 11937 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐴𝐷𝐸) ≤ (𝐵𝐷𝐹))
7423fovrnda 6758 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴𝑋𝐹𝑋)) → (𝐴𝐷𝐹) ∈ ℝ*)
751, 16, 39, 74syl12anc 1321 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐴𝐷𝐹) ∈ ℝ*)
76 psmettri2 22024 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐹𝑋)) → (𝐵𝐷𝐹) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐹)))
771, 16, 34, 39, 76syl13anc 1325 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐵𝐷𝐹) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐹)))
7852oveq1d 6619 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐹)) = (0 +𝑒 (𝐴𝐷𝐹)))
79 xaddid2 12016 . . . . . 6 ((𝐴𝐷𝐹) ∈ ℝ* → (0 +𝑒 (𝐴𝐷𝐹)) = (𝐴𝐷𝐹))
8075, 79syl 17 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (0 +𝑒 (𝐴𝐷𝐹)) = (𝐴𝐷𝐹))
8178, 80eqtrd 2655 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐹)) = (𝐴𝐷𝐹))
8277, 81breqtrd 4639 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐵𝐷𝐹) ≤ (𝐴𝐷𝐹))
83 psmettri2 22024 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐸𝑋𝐴𝑋𝐹𝑋)) → (𝐴𝐷𝐹) ≤ ((𝐸𝐷𝐴) +𝑒 (𝐸𝐷𝐹)))
841, 20, 16, 39, 83syl13anc 1325 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐴𝐷𝐹) ≤ ((𝐸𝐷𝐴) +𝑒 (𝐸𝐷𝐹)))
85 xaddid1 12015 . . . . . 6 ((𝐸𝐷𝐴) ∈ ℝ* → ((𝐸𝐷𝐴) +𝑒 0) = (𝐸𝐷𝐴))
8625, 85syl 17 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → ((𝐸𝐷𝐴) +𝑒 0) = (𝐸𝐷𝐴))
8766oveq2d 6620 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → ((𝐸𝐷𝐴) +𝑒 (𝐸𝐷𝐹)) = ((𝐸𝐷𝐴) +𝑒 0))
8886, 87, 223eqtr4d 2665 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → ((𝐸𝐷𝐴) +𝑒 (𝐸𝐷𝐹)) = (𝐴𝐷𝐸))
8984, 88breqtrd 4639 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐴𝐷𝐹) ≤ (𝐴𝐷𝐸))
9044, 75, 26, 82, 89xrletrd 11937 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐵𝐷𝐹) ≤ (𝐴𝐷𝐸))
91 xrletri3 11929 . . 3 (((𝐴𝐷𝐸) ∈ ℝ* ∧ (𝐵𝐷𝐹) ∈ ℝ*) → ((𝐴𝐷𝐸) = (𝐵𝐷𝐹) ↔ ((𝐴𝐷𝐸) ≤ (𝐵𝐷𝐹) ∧ (𝐵𝐷𝐹) ≤ (𝐴𝐷𝐸))))
9226, 44, 91syl2anc 692 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → ((𝐴𝐷𝐸) = (𝐵𝐷𝐹) ↔ ((𝐴𝐷𝐸) ≤ (𝐵𝐷𝐹) ∧ (𝐵𝐷𝐹) ≤ (𝐴𝐷𝐸))))
9373, 90, 92mpbir2and 956 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝐵𝐸(~Met𝐷)𝐹)) → (𝐴𝐷𝐸) = (𝐵𝐷𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  Vcvv 3186  wss 3555   class class class wbr 4613   × cxp 5072  dom cdm 5074  ran crn 5075  Rel wrel 5079  cfv 5847  (class class class)co 6604  0cc0 9880  *cxr 10017  cle 10019   +𝑒 cxad 11888  PsMetcpsmet 19649  ~Metcmetid 29708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-po 4995  df-so 4996  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-xadd 11891  df-psmet 19657  df-metid 29710
This theorem is referenced by:  pstmfval  29718
  Copyright terms: Public domain W3C validator