Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satffunlem2 Structured version   Visualization version   GIF version

Theorem satffunlem2 32674
Description: Lemma 2 for satffun 32675: induction step. (Contributed by AV, 28-Oct-2023.)
Assertion
Ref Expression
satffunlem2 ((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) → (Fun ((𝑀 Sat 𝐸)‘suc 𝑁) → Fun ((𝑀 Sat 𝐸)‘suc suc 𝑁)))

Proof of Theorem satffunlem2
Dummy variables 𝑓 𝑖 𝑗 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 487 . . . 4 (((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) ∧ Fun ((𝑀 Sat 𝐸)‘suc 𝑁)) → Fun ((𝑀 Sat 𝐸)‘suc 𝑁))
2 simpr 487 . . . . . . 7 ((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) → (𝑀𝑉𝐸𝑊))
3 peano2 7595 . . . . . . . . 9 (𝑁 ∈ ω → suc 𝑁 ∈ ω)
43ancri 552 . . . . . . . 8 (𝑁 ∈ ω → (suc 𝑁 ∈ ω ∧ 𝑁 ∈ ω))
54adantr 483 . . . . . . 7 ((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) → (suc 𝑁 ∈ ω ∧ 𝑁 ∈ ω))
6 sssucid 6261 . . . . . . . 8 𝑁 ⊆ suc 𝑁
76a1i 11 . . . . . . 7 ((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) → 𝑁 ⊆ suc 𝑁)
8 eqid 2820 . . . . . . . . 9 (𝑀 Sat 𝐸) = (𝑀 Sat 𝐸)
98satfsschain 32630 . . . . . . . 8 (((𝑀𝑉𝐸𝑊) ∧ (suc 𝑁 ∈ ω ∧ 𝑁 ∈ ω)) → (𝑁 ⊆ suc 𝑁 → ((𝑀 Sat 𝐸)‘𝑁) ⊆ ((𝑀 Sat 𝐸)‘suc 𝑁)))
109imp 409 . . . . . . 7 ((((𝑀𝑉𝐸𝑊) ∧ (suc 𝑁 ∈ ω ∧ 𝑁 ∈ ω)) ∧ 𝑁 ⊆ suc 𝑁) → ((𝑀 Sat 𝐸)‘𝑁) ⊆ ((𝑀 Sat 𝐸)‘suc 𝑁))
112, 5, 7, 10syl21anc 835 . . . . . 6 ((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) → ((𝑀 Sat 𝐸)‘𝑁) ⊆ ((𝑀 Sat 𝐸)‘suc 𝑁))
12 eqid 2820 . . . . . . . 8 ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))) = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))
13 eqid 2820 . . . . . . . 8 {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)} = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}
148, 12, 13satffunlem2lem1 32670 . . . . . . 7 ((Fun ((𝑀 Sat 𝐸)‘suc 𝑁) ∧ ((𝑀 Sat 𝐸)‘𝑁) ⊆ ((𝑀 Sat 𝐸)‘suc 𝑁)) → Fun {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘suc 𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∨ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)∃𝑣 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))})
1514expcom 416 . . . . . 6 (((𝑀 Sat 𝐸)‘𝑁) ⊆ ((𝑀 Sat 𝐸)‘suc 𝑁) → (Fun ((𝑀 Sat 𝐸)‘suc 𝑁) → Fun {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘suc 𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∨ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)∃𝑣 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))}))
1611, 15syl 17 . . . . 5 ((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) → (Fun ((𝑀 Sat 𝐸)‘suc 𝑁) → Fun {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘suc 𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∨ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)∃𝑣 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))}))
1716imp 409 . . . 4 (((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) ∧ Fun ((𝑀 Sat 𝐸)‘suc 𝑁)) → Fun {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘suc 𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∨ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)∃𝑣 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))})
188, 12, 13satffunlem2lem2 32672 . . . 4 (((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) ∧ Fun ((𝑀 Sat 𝐸)‘suc 𝑁)) → (dom ((𝑀 Sat 𝐸)‘suc 𝑁) ∩ dom {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘suc 𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∨ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)∃𝑣 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))}) = ∅)
19 funun 6393 . . . 4 (((Fun ((𝑀 Sat 𝐸)‘suc 𝑁) ∧ Fun {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘suc 𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∨ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)∃𝑣 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))}) ∧ (dom ((𝑀 Sat 𝐸)‘suc 𝑁) ∩ dom {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘suc 𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∨ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)∃𝑣 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))}) = ∅) → Fun (((𝑀 Sat 𝐸)‘suc 𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘suc 𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∨ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)∃𝑣 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))}))
201, 17, 18, 19syl21anc 835 . . 3 (((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) ∧ Fun ((𝑀 Sat 𝐸)‘suc 𝑁)) → Fun (((𝑀 Sat 𝐸)‘suc 𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘suc 𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∨ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)∃𝑣 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))}))
21 simpl 485 . . . . . 6 ((𝑀𝑉𝐸𝑊) → 𝑀𝑉)
22 simpr 487 . . . . . 6 ((𝑀𝑉𝐸𝑊) → 𝐸𝑊)
23 simpl 485 . . . . . 6 ((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) → 𝑁 ∈ ω)
248, 12, 13satfvsucsuc 32631 . . . . . 6 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → ((𝑀 Sat 𝐸)‘suc suc 𝑁) = (((𝑀 Sat 𝐸)‘suc 𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘suc 𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∨ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)∃𝑣 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))}))
2521, 22, 23, 24syl2an23an 1418 . . . . 5 ((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) → ((𝑀 Sat 𝐸)‘suc suc 𝑁) = (((𝑀 Sat 𝐸)‘suc 𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘suc 𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∨ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)∃𝑣 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))}))
2625funeqd 6370 . . . 4 ((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) → (Fun ((𝑀 Sat 𝐸)‘suc suc 𝑁) ↔ Fun (((𝑀 Sat 𝐸)‘suc 𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘suc 𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∨ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)∃𝑣 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))})))
2726adantr 483 . . 3 (((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) ∧ Fun ((𝑀 Sat 𝐸)‘suc 𝑁)) → (Fun ((𝑀 Sat 𝐸)‘suc suc 𝑁) ↔ Fun (((𝑀 Sat 𝐸)‘suc 𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘suc 𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∨ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)∃𝑣 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))})))
2820, 27mpbird 259 . 2 (((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) ∧ Fun ((𝑀 Sat 𝐸)‘suc 𝑁)) → Fun ((𝑀 Sat 𝐸)‘suc suc 𝑁))
2928ex 415 1 ((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) → (Fun ((𝑀 Sat 𝐸)‘suc 𝑁) → Fun ((𝑀 Sat 𝐸)‘suc suc 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1536  wcel 2113  wral 3137  wrex 3138  {crab 3141  cdif 3926  cun 3927  cin 3928  wss 3929  c0 4284  {csn 4560  cop 4566  {copab 5121  dom cdm 5548  cres 5550  suc csuc 6186  Fun wfun 6342  cfv 6348  (class class class)co 7149  ωcom 7573  1st c1st 7680  2nd c2nd 7681  m cmap 8399  𝑔cgna 32600  𝑔cgol 32601   Sat csat 32602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-inf2 9097
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7574  df-1st 7682  df-2nd 7683  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-1o 8095  df-2o 8096  df-map 8401  df-goel 32606  df-gona 32607  df-goal 32608  df-sat 32609  df-fmla 32611
This theorem is referenced by:  satffun  32675
  Copyright terms: Public domain W3C validator