![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > slmdvs0 | Structured version Visualization version GIF version |
Description: Anything times the zero vector is the zero vector. Equation 1b of [Kreyszig] p. 51. (hvmul0 28009 analog.) (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
Ref | Expression |
---|---|
slmdvs0.f | ⊢ 𝐹 = (Scalar‘𝑊) |
slmdvs0.s | ⊢ · = ( ·𝑠 ‘𝑊) |
slmdvs0.k | ⊢ 𝐾 = (Base‘𝐹) |
slmdvs0.z | ⊢ 0 = (0g‘𝑊) |
Ref | Expression |
---|---|
slmdvs0 | ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → (𝑋 · 0 ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | slmdvs0.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
2 | 1 | slmdsrg 29888 | . . . 4 ⊢ (𝑊 ∈ SLMod → 𝐹 ∈ SRing) |
3 | slmdvs0.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
4 | eqid 2651 | . . . . 5 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
5 | eqid 2651 | . . . . 5 ⊢ (0g‘𝐹) = (0g‘𝐹) | |
6 | 3, 4, 5 | srgrz 18572 | . . . 4 ⊢ ((𝐹 ∈ SRing ∧ 𝑋 ∈ 𝐾) → (𝑋(.r‘𝐹)(0g‘𝐹)) = (0g‘𝐹)) |
7 | 2, 6 | sylan 487 | . . 3 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → (𝑋(.r‘𝐹)(0g‘𝐹)) = (0g‘𝐹)) |
8 | 7 | oveq1d 6705 | . 2 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → ((𝑋(.r‘𝐹)(0g‘𝐹)) · 0 ) = ((0g‘𝐹) · 0 )) |
9 | simpl 472 | . . . 4 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → 𝑊 ∈ SLMod) | |
10 | simpr 476 | . . . 4 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → 𝑋 ∈ 𝐾) | |
11 | 2 | adantr 480 | . . . . 5 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → 𝐹 ∈ SRing) |
12 | 3, 5 | srg0cl 18565 | . . . . 5 ⊢ (𝐹 ∈ SRing → (0g‘𝐹) ∈ 𝐾) |
13 | 11, 12 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → (0g‘𝐹) ∈ 𝐾) |
14 | eqid 2651 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
15 | slmdvs0.z | . . . . . 6 ⊢ 0 = (0g‘𝑊) | |
16 | 14, 15 | slmd0vcl 29902 | . . . . 5 ⊢ (𝑊 ∈ SLMod → 0 ∈ (Base‘𝑊)) |
17 | 16 | adantr 480 | . . . 4 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → 0 ∈ (Base‘𝑊)) |
18 | slmdvs0.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
19 | 14, 1, 18, 3, 4 | slmdvsass 29898 | . . . 4 ⊢ ((𝑊 ∈ SLMod ∧ (𝑋 ∈ 𝐾 ∧ (0g‘𝐹) ∈ 𝐾 ∧ 0 ∈ (Base‘𝑊))) → ((𝑋(.r‘𝐹)(0g‘𝐹)) · 0 ) = (𝑋 · ((0g‘𝐹) · 0 ))) |
20 | 9, 10, 13, 17, 19 | syl13anc 1368 | . . 3 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → ((𝑋(.r‘𝐹)(0g‘𝐹)) · 0 ) = (𝑋 · ((0g‘𝐹) · 0 ))) |
21 | 14, 1, 18, 5, 15 | slmd0vs 29905 | . . . . 5 ⊢ ((𝑊 ∈ SLMod ∧ 0 ∈ (Base‘𝑊)) → ((0g‘𝐹) · 0 ) = 0 ) |
22 | 17, 21 | syldan 486 | . . . 4 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → ((0g‘𝐹) · 0 ) = 0 ) |
23 | 22 | oveq2d 6706 | . . 3 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → (𝑋 · ((0g‘𝐹) · 0 )) = (𝑋 · 0 )) |
24 | 20, 23 | eqtrd 2685 | . 2 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → ((𝑋(.r‘𝐹)(0g‘𝐹)) · 0 ) = (𝑋 · 0 )) |
25 | 8, 24, 22 | 3eqtr3d 2693 | 1 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → (𝑋 · 0 ) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ‘cfv 5926 (class class class)co 6690 Basecbs 15904 .rcmulr 15989 Scalarcsca 15991 ·𝑠 cvsca 15992 0gc0g 16147 SRingcsrg 18551 SLModcslmd 29881 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-iota 5889 df-fun 5928 df-fv 5934 df-riota 6651 df-ov 6693 df-0g 16149 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-cmn 18241 df-srg 18552 df-slmd 29882 |
This theorem is referenced by: gsumvsca1 29910 |
Copyright terms: Public domain | W3C validator |