MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smoord Structured version   Visualization version   GIF version

Theorem smoord 7507
Description: A strictly monotone ordinal function preserves strict ordering. (Contributed by Mario Carneiro, 4-Mar-2013.)
Assertion
Ref Expression
smoord (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 ↔ (𝐹𝐶) ∈ (𝐹𝐷)))

Proof of Theorem smoord
StepHypRef Expression
1 smodm2 7497 . . . 4 ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴)
21adantr 480 . . 3 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → Ord 𝐴)
3 simprl 809 . . 3 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → 𝐶𝐴)
4 ordelord 5783 . . 3 ((Ord 𝐴𝐶𝐴) → Ord 𝐶)
52, 3, 4syl2anc 694 . 2 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → Ord 𝐶)
6 simprr 811 . . 3 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → 𝐷𝐴)
7 ordelord 5783 . . 3 ((Ord 𝐴𝐷𝐴) → Ord 𝐷)
82, 6, 7syl2anc 694 . 2 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → Ord 𝐷)
9 ordtri3or 5793 . . 3 ((Ord 𝐶 ∧ Ord 𝐷) → (𝐶𝐷𝐶 = 𝐷𝐷𝐶))
10 simp3 1083 . . . . . 6 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐶𝐷) → 𝐶𝐷)
11 smoel2 7505 . . . . . . . . 9 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐷𝐴𝐶𝐷)) → (𝐹𝐶) ∈ (𝐹𝐷))
1211expr 642 . . . . . . . 8 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ 𝐷𝐴) → (𝐶𝐷 → (𝐹𝐶) ∈ (𝐹𝐷)))
1312adantrl 752 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 → (𝐹𝐶) ∈ (𝐹𝐷)))
14133impia 1280 . . . . . 6 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐶𝐷) → (𝐹𝐶) ∈ (𝐹𝐷))
1510, 142thd 255 . . . . 5 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐶𝐷) → (𝐶𝐷 ↔ (𝐹𝐶) ∈ (𝐹𝐷)))
16153expia 1286 . . . 4 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 → (𝐶𝐷 ↔ (𝐹𝐶) ∈ (𝐹𝐷))))
17 ordirr 5779 . . . . . . . . 9 (Ord 𝐶 → ¬ 𝐶𝐶)
185, 17syl 17 . . . . . . . 8 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → ¬ 𝐶𝐶)
19183adant3 1101 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐶 = 𝐷) → ¬ 𝐶𝐶)
20 simp3 1083 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐶 = 𝐷) → 𝐶 = 𝐷)
2119, 20neleqtrd 2751 . . . . . 6 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐶 = 𝐷) → ¬ 𝐶𝐷)
22 smofvon2 7498 . . . . . . . . . 10 (Smo 𝐹 → (𝐹𝐶) ∈ On)
2322ad2antlr 763 . . . . . . . . 9 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → (𝐹𝐶) ∈ On)
24 eloni 5771 . . . . . . . . 9 ((𝐹𝐶) ∈ On → Ord (𝐹𝐶))
25 ordirr 5779 . . . . . . . . 9 (Ord (𝐹𝐶) → ¬ (𝐹𝐶) ∈ (𝐹𝐶))
2623, 24, 253syl 18 . . . . . . . 8 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → ¬ (𝐹𝐶) ∈ (𝐹𝐶))
27263adant3 1101 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐶 = 𝐷) → ¬ (𝐹𝐶) ∈ (𝐹𝐶))
2820fveq2d 6233 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐶 = 𝐷) → (𝐹𝐶) = (𝐹𝐷))
2927, 28neleqtrd 2751 . . . . . 6 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐶 = 𝐷) → ¬ (𝐹𝐶) ∈ (𝐹𝐷))
3021, 292falsed 365 . . . . 5 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐶 = 𝐷) → (𝐶𝐷 ↔ (𝐹𝐶) ∈ (𝐹𝐷)))
31303expia 1286 . . . 4 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶 = 𝐷 → (𝐶𝐷 ↔ (𝐹𝐶) ∈ (𝐹𝐷))))
3283adant3 1101 . . . . . . . 8 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶) → Ord 𝐷)
33 ordn2lp 5781 . . . . . . . 8 (Ord 𝐷 → ¬ (𝐷𝐶𝐶𝐷))
3432, 33syl 17 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶) → ¬ (𝐷𝐶𝐶𝐷))
35 pm3.2 462 . . . . . . . 8 (𝐷𝐶 → (𝐶𝐷 → (𝐷𝐶𝐶𝐷)))
36353ad2ant3 1104 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶) → (𝐶𝐷 → (𝐷𝐶𝐶𝐷)))
3734, 36mtod 189 . . . . . 6 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶) → ¬ 𝐶𝐷)
3823, 24syl 17 . . . . . . . . 9 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → Ord (𝐹𝐶))
39383adant3 1101 . . . . . . . 8 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶) → Ord (𝐹𝐶))
40 ordn2lp 5781 . . . . . . . 8 (Ord (𝐹𝐶) → ¬ ((𝐹𝐶) ∈ (𝐹𝐷) ∧ (𝐹𝐷) ∈ (𝐹𝐶)))
4139, 40syl 17 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶) → ¬ ((𝐹𝐶) ∈ (𝐹𝐷) ∧ (𝐹𝐷) ∈ (𝐹𝐶)))
42 smoel2 7505 . . . . . . . . . 10 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐶)) → (𝐹𝐷) ∈ (𝐹𝐶))
4342adantrlr 759 . . . . . . . . 9 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ ((𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶)) → (𝐹𝐷) ∈ (𝐹𝐶))
44433impb 1279 . . . . . . . 8 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶) → (𝐹𝐷) ∈ (𝐹𝐶))
45 pm3.21 463 . . . . . . . 8 ((𝐹𝐷) ∈ (𝐹𝐶) → ((𝐹𝐶) ∈ (𝐹𝐷) → ((𝐹𝐶) ∈ (𝐹𝐷) ∧ (𝐹𝐷) ∈ (𝐹𝐶))))
4644, 45syl 17 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶) → ((𝐹𝐶) ∈ (𝐹𝐷) → ((𝐹𝐶) ∈ (𝐹𝐷) ∧ (𝐹𝐷) ∈ (𝐹𝐶))))
4741, 46mtod 189 . . . . . 6 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶) → ¬ (𝐹𝐶) ∈ (𝐹𝐷))
4837, 472falsed 365 . . . . 5 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶) → (𝐶𝐷 ↔ (𝐹𝐶) ∈ (𝐹𝐷)))
49483expia 1286 . . . 4 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → (𝐷𝐶 → (𝐶𝐷 ↔ (𝐹𝐶) ∈ (𝐹𝐷))))
5016, 31, 493jaod 1432 . . 3 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → ((𝐶𝐷𝐶 = 𝐷𝐷𝐶) → (𝐶𝐷 ↔ (𝐹𝐶) ∈ (𝐹𝐷))))
519, 50syl5 34 . 2 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → ((Ord 𝐶 ∧ Ord 𝐷) → (𝐶𝐷 ↔ (𝐹𝐶) ∈ (𝐹𝐷))))
525, 8, 51mp2and 715 1 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 ↔ (𝐹𝐶) ∈ (𝐹𝐷)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3o 1053  w3a 1054   = wceq 1523  wcel 2030  Ord word 5760  Oncon0 5761   Fn wfn 5921  cfv 5926  Smo wsmo 7487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-ord 5764  df-on 5765  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-fv 5934  df-smo 7488
This theorem is referenced by:  smoword  7508  smoiso2  7511
  Copyright terms: Public domain W3C validator