MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smoword Structured version   Visualization version   GIF version

Theorem smoword 7508
Description: A strictly monotone ordinal function preserves weak ordering. (Contributed by Mario Carneiro, 4-Mar-2013.)
Assertion
Ref Expression
smoword (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 ↔ (𝐹𝐶) ⊆ (𝐹𝐷)))

Proof of Theorem smoword
StepHypRef Expression
1 smoord 7507 . . . 4 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐷𝐴𝐶𝐴)) → (𝐷𝐶 ↔ (𝐹𝐷) ∈ (𝐹𝐶)))
21notbid 307 . . 3 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐷𝐴𝐶𝐴)) → (¬ 𝐷𝐶 ↔ ¬ (𝐹𝐷) ∈ (𝐹𝐶)))
32ancom2s 861 . 2 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → (¬ 𝐷𝐶 ↔ ¬ (𝐹𝐷) ∈ (𝐹𝐶)))
4 smodm2 7497 . . . . 5 ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴)
54adantr 480 . . . 4 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → Ord 𝐴)
6 simprl 809 . . . 4 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → 𝐶𝐴)
7 ordelord 5783 . . . 4 ((Ord 𝐴𝐶𝐴) → Ord 𝐶)
85, 6, 7syl2anc 694 . . 3 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → Ord 𝐶)
9 simprr 811 . . . 4 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → 𝐷𝐴)
10 ordelord 5783 . . . 4 ((Ord 𝐴𝐷𝐴) → Ord 𝐷)
115, 9, 10syl2anc 694 . . 3 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → Ord 𝐷)
12 ordtri1 5794 . . 3 ((Ord 𝐶 ∧ Ord 𝐷) → (𝐶𝐷 ↔ ¬ 𝐷𝐶))
138, 11, 12syl2anc 694 . 2 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 ↔ ¬ 𝐷𝐶))
14 simplr 807 . . . 4 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → Smo 𝐹)
15 smofvon2 7498 . . . 4 (Smo 𝐹 → (𝐹𝐶) ∈ On)
16 eloni 5771 . . . 4 ((𝐹𝐶) ∈ On → Ord (𝐹𝐶))
1714, 15, 163syl 18 . . 3 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → Ord (𝐹𝐶))
18 smofvon2 7498 . . . 4 (Smo 𝐹 → (𝐹𝐷) ∈ On)
19 eloni 5771 . . . 4 ((𝐹𝐷) ∈ On → Ord (𝐹𝐷))
2014, 18, 193syl 18 . . 3 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → Ord (𝐹𝐷))
21 ordtri1 5794 . . 3 ((Ord (𝐹𝐶) ∧ Ord (𝐹𝐷)) → ((𝐹𝐶) ⊆ (𝐹𝐷) ↔ ¬ (𝐹𝐷) ∈ (𝐹𝐶)))
2217, 20, 21syl2anc 694 . 2 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) ⊆ (𝐹𝐷) ↔ ¬ (𝐹𝐷) ∈ (𝐹𝐶)))
233, 13, 223bitr4d 300 1 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 ↔ (𝐹𝐶) ⊆ (𝐹𝐷)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  wcel 2030  wss 3607  Ord word 5760  Oncon0 5761   Fn wfn 5921  cfv 5926  Smo wsmo 7487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-ord 5764  df-on 5765  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-fv 5934  df-smo 7488
This theorem is referenced by:  cfcoflem  9132  coftr  9133
  Copyright terms: Public domain W3C validator