MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smoword Structured version   Visualization version   GIF version

Theorem smoword 7327
Description: A strictly monotone ordinal function preserves weak ordering. (Contributed by Mario Carneiro, 4-Mar-2013.)
Assertion
Ref Expression
smoword (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 ↔ (𝐹𝐶) ⊆ (𝐹𝐷)))

Proof of Theorem smoword
StepHypRef Expression
1 smoord 7326 . . . 4 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐷𝐴𝐶𝐴)) → (𝐷𝐶 ↔ (𝐹𝐷) ∈ (𝐹𝐶)))
21notbid 306 . . 3 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐷𝐴𝐶𝐴)) → (¬ 𝐷𝐶 ↔ ¬ (𝐹𝐷) ∈ (𝐹𝐶)))
32ancom2s 839 . 2 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → (¬ 𝐷𝐶 ↔ ¬ (𝐹𝐷) ∈ (𝐹𝐶)))
4 smodm2 7316 . . . . 5 ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴)
54adantr 479 . . . 4 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → Ord 𝐴)
6 simprl 789 . . . 4 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → 𝐶𝐴)
7 ordelord 5648 . . . 4 ((Ord 𝐴𝐶𝐴) → Ord 𝐶)
85, 6, 7syl2anc 690 . . 3 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → Ord 𝐶)
9 simprr 791 . . . 4 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → 𝐷𝐴)
10 ordelord 5648 . . . 4 ((Ord 𝐴𝐷𝐴) → Ord 𝐷)
115, 9, 10syl2anc 690 . . 3 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → Ord 𝐷)
12 ordtri1 5659 . . 3 ((Ord 𝐶 ∧ Ord 𝐷) → (𝐶𝐷 ↔ ¬ 𝐷𝐶))
138, 11, 12syl2anc 690 . 2 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 ↔ ¬ 𝐷𝐶))
14 simplr 787 . . . 4 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → Smo 𝐹)
15 smofvon2 7317 . . . 4 (Smo 𝐹 → (𝐹𝐶) ∈ On)
16 eloni 5636 . . . 4 ((𝐹𝐶) ∈ On → Ord (𝐹𝐶))
1714, 15, 163syl 18 . . 3 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → Ord (𝐹𝐶))
18 smofvon2 7317 . . . 4 (Smo 𝐹 → (𝐹𝐷) ∈ On)
19 eloni 5636 . . . 4 ((𝐹𝐷) ∈ On → Ord (𝐹𝐷))
2014, 18, 193syl 18 . . 3 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → Ord (𝐹𝐷))
21 ordtri1 5659 . . 3 ((Ord (𝐹𝐶) ∧ Ord (𝐹𝐷)) → ((𝐹𝐶) ⊆ (𝐹𝐷) ↔ ¬ (𝐹𝐷) ∈ (𝐹𝐶)))
2217, 20, 21syl2anc 690 . 2 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) ⊆ (𝐹𝐷) ↔ ¬ (𝐹𝐷) ∈ (𝐹𝐶)))
233, 13, 223bitr4d 298 1 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 ↔ (𝐹𝐶) ⊆ (𝐹𝐷)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382  wcel 1976  wss 3539  Ord word 5625  Oncon0 5626   Fn wfn 5785  cfv 5790  Smo wsmo 7306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-sbc 3402  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-br 4578  df-opab 4638  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-ord 5629  df-on 5630  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-fv 5798  df-smo 7307
This theorem is referenced by:  cfcoflem  8954  coftr  8955
  Copyright terms: Public domain W3C validator