Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-1ne2 Structured version   Visualization version   GIF version

Theorem sn-1ne2 39207
Description: A proof of 1ne2 11846 without using ax-mulcom 10601, ax-mulass 10603, ax-pre-mulgt0 10614. Based on mul02lem2 10817. (Contributed by SN, 13-Dec-2023.)
Assertion
Ref Expression
sn-1ne2 1 ≠ 2

Proof of Theorem sn-1ne2
StepHypRef Expression
1 0ne1 11709 . . . 4 0 ≠ 1
2 ax-icn 10596 . . . . . . . . . . . 12 i ∈ ℂ
32, 2mulcli 10648 . . . . . . . . . . 11 (i · i) ∈ ℂ
4 ax-1cn 10595 . . . . . . . . . . 11 1 ∈ ℂ
53, 4, 4addassi 10651 . . . . . . . . . 10 (((i · i) + 1) + 1) = ((i · i) + (1 + 1))
65a1i 11 . . . . . . . . 9 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → (((i · i) + 1) + 1) = ((i · i) + (1 + 1)))
7 simpr 487 . . . . . . . . . 10 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → 1 = (1 + 1))
87oveq2d 7172 . . . . . . . . 9 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → ((i · i) + 1) = ((i · i) + (1 + 1)))
9 ax-i2m1 10605 . . . . . . . . . 10 ((i · i) + 1) = 0
109a1i 11 . . . . . . . . 9 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → ((i · i) + 1) = 0)
116, 8, 103eqtr2rd 2863 . . . . . . . 8 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → 0 = (((i · i) + 1) + 1))
12 simpl 485 . . . . . . . 8 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → 0 = (0 + 0))
1310oveq1d 7171 . . . . . . . 8 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → (((i · i) + 1) + 1) = (0 + 1))
1411, 12, 133eqtr3d 2864 . . . . . . 7 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → (0 + 0) = (0 + 1))
15 0red 10644 . . . . . . . 8 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → 0 ∈ ℝ)
16 1red 10642 . . . . . . . 8 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → 1 ∈ ℝ)
17 readdcan 10814 . . . . . . . 8 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 0 ∈ ℝ) → ((0 + 0) = (0 + 1) ↔ 0 = 1))
1815, 16, 15, 17syl3anc 1367 . . . . . . 7 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → ((0 + 0) = (0 + 1) ↔ 0 = 1))
1914, 18mpbid 234 . . . . . 6 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → 0 = 1)
2019ex 415 . . . . 5 (0 = (0 + 0) → (1 = (1 + 1) → 0 = 1))
2120necon3d 3037 . . . 4 (0 = (0 + 0) → (0 ≠ 1 → 1 ≠ (1 + 1)))
221, 21mpi 20 . . 3 (0 = (0 + 0) → 1 ≠ (1 + 1))
23 oveq2 7164 . . . . 5 (1 = (1 + 1) → (0 · 1) = (0 · (1 + 1)))
24 0re 10643 . . . . . 6 0 ∈ ℝ
25 ax-1rid 10607 . . . . . 6 (0 ∈ ℝ → (0 · 1) = 0)
2624, 25ax-mp 5 . . . . 5 (0 · 1) = 0
27 0cn 10633 . . . . . . 7 0 ∈ ℂ
2827, 4, 4adddii 10653 . . . . . 6 (0 · (1 + 1)) = ((0 · 1) + (0 · 1))
2926, 26oveq12i 7168 . . . . . 6 ((0 · 1) + (0 · 1)) = (0 + 0)
3028, 29eqtri 2844 . . . . 5 (0 · (1 + 1)) = (0 + 0)
3123, 26, 303eqtr3g 2879 . . . 4 (1 = (1 + 1) → 0 = (0 + 0))
3231necon3i 3048 . . 3 (0 ≠ (0 + 0) → 1 ≠ (1 + 1))
3322, 32pm2.61ine 3100 . 2 1 ≠ (1 + 1)
34 df-2 11701 . 2 2 = (1 + 1)
3533, 34neeqtrri 3089 1 1 ≠ 2
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3016  (class class class)co 7156  cr 10536  0cc0 10537  1c1 10538  ici 10539   + caddc 10540   · cmul 10542  2c2 11693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-addass 10602  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-ltxr 10680  df-2 11701
This theorem is referenced by:  remul02  39284  sn-0ne2  39285  remul01  39286
  Copyright terms: Public domain W3C validator