Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  remul02 Structured version   Visualization version   GIF version

Theorem remul02 39284
Description: Real number version of mul02 10818 proven without ax-mulcom 10601. (Contributed by SN, 23-Jan-2024.)
Assertion
Ref Expression
remul02 (𝐴 ∈ ℝ → (0 · 𝐴) = 0)

Proof of Theorem remul02
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sn-1ne2 39207 . 2 1 ≠ 2
2 elre0re 39203 . . . . . . 7 (𝐴 ∈ ℝ → 0 ∈ ℝ)
3 id 22 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
42, 3remulcld 10671 . . . . . 6 (𝐴 ∈ ℝ → (0 · 𝐴) ∈ ℝ)
5 ax-rrecex 10609 . . . . . 6 (((0 · 𝐴) ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → ∃𝑥 ∈ ℝ ((0 · 𝐴) · 𝑥) = 1)
64, 5sylan 582 . . . . 5 ((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → ∃𝑥 ∈ ℝ ((0 · 𝐴) · 𝑥) = 1)
7 simprr 771 . . . . . 6 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → ((0 · 𝐴) · 𝑥) = 1)
8 df-2 11701 . . . . . . . . . . . . 13 2 = (1 + 1)
98oveq1i 7166 . . . . . . . . . . . 12 (2 · 0) = ((1 + 1) · 0)
10 re0m0e0 39281 . . . . . . . . . . . . . . 15 (0 − 0) = 0
1110eqcomi 2830 . . . . . . . . . . . . . 14 0 = (0 − 0)
1211oveq2i 7167 . . . . . . . . . . . . 13 ((1 + 1) · 0) = ((1 + 1) · (0 − 0))
13 1re 10641 . . . . . . . . . . . . . . 15 1 ∈ ℝ
1413, 13readdcli 10656 . . . . . . . . . . . . . 14 (1 + 1) ∈ ℝ
15 sn-00idlem1 39277 . . . . . . . . . . . . . 14 ((1 + 1) ∈ ℝ → ((1 + 1) · (0 − 0)) = ((1 + 1) − (1 + 1)))
1614, 15ax-mp 5 . . . . . . . . . . . . 13 ((1 + 1) · (0 − 0)) = ((1 + 1) − (1 + 1))
17 repnpcan 39271 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ 1 ∈ ℝ ∧ 1 ∈ ℝ) → ((1 + 1) − (1 + 1)) = (1 − 1))
1813, 13, 13, 17mp3an 1457 . . . . . . . . . . . . . 14 ((1 + 1) − (1 + 1)) = (1 − 1)
19 re1m1e0m0 39276 . . . . . . . . . . . . . 14 (1 − 1) = (0 − 0)
2018, 19, 103eqtri 2848 . . . . . . . . . . . . 13 ((1 + 1) − (1 + 1)) = 0
2112, 16, 203eqtri 2848 . . . . . . . . . . . 12 ((1 + 1) · 0) = 0
229, 21eqtr2i 2845 . . . . . . . . . . 11 0 = (2 · 0)
2322oveq1i 7166 . . . . . . . . . 10 (0 · 𝐴) = ((2 · 0) · 𝐴)
2423oveq1i 7166 . . . . . . . . 9 ((0 · 𝐴) · 𝑥) = (((2 · 0) · 𝐴) · 𝑥)
2524a1i 11 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → ((0 · 𝐴) · 𝑥) = (((2 · 0) · 𝐴) · 𝑥))
26 2cnd 11716 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → 2 ∈ ℂ)
27 0cnd 10634 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → 0 ∈ ℂ)
28 simpll 765 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → 𝐴 ∈ ℝ)
2928recnd 10669 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → 𝐴 ∈ ℂ)
3026, 27, 29mulassd 10664 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → ((2 · 0) · 𝐴) = (2 · (0 · 𝐴)))
3130oveq1d 7171 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → (((2 · 0) · 𝐴) · 𝑥) = ((2 · (0 · 𝐴)) · 𝑥))
324ad2antrr 724 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → (0 · 𝐴) ∈ ℝ)
3332recnd 10669 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → (0 · 𝐴) ∈ ℂ)
34 simprl 769 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → 𝑥 ∈ ℝ)
3534recnd 10669 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → 𝑥 ∈ ℂ)
3626, 33, 35mulassd 10664 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → ((2 · (0 · 𝐴)) · 𝑥) = (2 · ((0 · 𝐴) · 𝑥)))
3725, 31, 363eqtrd 2860 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → ((0 · 𝐴) · 𝑥) = (2 · ((0 · 𝐴) · 𝑥)))
387oveq2d 7172 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → (2 · ((0 · 𝐴) · 𝑥)) = (2 · 1))
39 2re 11712 . . . . . . . 8 2 ∈ ℝ
40 ax-1rid 10607 . . . . . . . 8 (2 ∈ ℝ → (2 · 1) = 2)
4139, 40mp1i 13 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → (2 · 1) = 2)
4237, 38, 413eqtrd 2860 . . . . . 6 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → ((0 · 𝐴) · 𝑥) = 2)
437, 42eqtr3d 2858 . . . . 5 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((0 · 𝐴) · 𝑥) = 1)) → 1 = 2)
446, 43rexlimddv 3291 . . . 4 ((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → 1 = 2)
4544ex 415 . . 3 (𝐴 ∈ ℝ → ((0 · 𝐴) ≠ 0 → 1 = 2))
4645necon1d 3038 . 2 (𝐴 ∈ ℝ → (1 ≠ 2 → (0 · 𝐴) = 0))
471, 46mpi 20 1 (𝐴 ∈ ℝ → (0 · 𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3016  wrex 3139  (class class class)co 7156  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542  2c2 11693   cresub 39244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-ltxr 10680  df-2 11701  df-resub 39245
This theorem is referenced by:  remul01  39286
  Copyright terms: Public domain W3C validator