![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > squeeze0 | Structured version Visualization version GIF version |
Description: If a nonnegative number is less than any positive number, it is zero. (Contributed by NM, 11-Feb-2006.) |
Ref | Expression |
---|---|
squeeze0 | ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥)) → 𝐴 = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 10232 | . . . 4 ⊢ 0 ∈ ℝ | |
2 | leloe 10316 | . . . 4 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴))) | |
3 | 1, 2 | mpan 708 | . . 3 ⊢ (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴))) |
4 | breq2 4808 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (0 < 𝑥 ↔ 0 < 𝐴)) | |
5 | breq2 4808 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝐴 < 𝑥 ↔ 𝐴 < 𝐴)) | |
6 | 4, 5 | imbi12d 333 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((0 < 𝑥 → 𝐴 < 𝑥) ↔ (0 < 𝐴 → 𝐴 < 𝐴))) |
7 | 6 | rspcv 3445 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥) → (0 < 𝐴 → 𝐴 < 𝐴))) |
8 | ltnr 10324 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴) | |
9 | 8 | pm2.21d 118 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (𝐴 < 𝐴 → 𝐴 = 0)) |
10 | 9 | com12 32 | . . . . . . 7 ⊢ (𝐴 < 𝐴 → (𝐴 ∈ ℝ → 𝐴 = 0)) |
11 | 10 | imim2i 16 | . . . . . 6 ⊢ ((0 < 𝐴 → 𝐴 < 𝐴) → (0 < 𝐴 → (𝐴 ∈ ℝ → 𝐴 = 0))) |
12 | 11 | com13 88 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 → ((0 < 𝐴 → 𝐴 < 𝐴) → 𝐴 = 0))) |
13 | 7, 12 | syl5d 73 | . . . 4 ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 → (∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥) → 𝐴 = 0))) |
14 | ax-1 6 | . . . . . 6 ⊢ (𝐴 = 0 → (∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥) → 𝐴 = 0)) | |
15 | 14 | eqcoms 2768 | . . . . 5 ⊢ (0 = 𝐴 → (∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥) → 𝐴 = 0)) |
16 | 15 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ ℝ → (0 = 𝐴 → (∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥) → 𝐴 = 0))) |
17 | 13, 16 | jaod 394 | . . 3 ⊢ (𝐴 ∈ ℝ → ((0 < 𝐴 ∨ 0 = 𝐴) → (∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥) → 𝐴 = 0))) |
18 | 3, 17 | sylbid 230 | . 2 ⊢ (𝐴 ∈ ℝ → (0 ≤ 𝐴 → (∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥) → 𝐴 = 0))) |
19 | 18 | 3imp 1102 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥)) → 𝐴 = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∨ wo 382 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ∀wral 3050 class class class wbr 4804 ℝcr 10127 0cc0 10128 < clt 10266 ≤ cle 10267 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-i2m1 10196 ax-1ne0 10197 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-po 5187 df-so 5188 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6816 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |