MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  squeeze0 Structured version   Visualization version   GIF version

Theorem squeeze0 11543
Description: If a nonnegative number is less than any positive number, it is zero. (Contributed by NM, 11-Feb-2006.)
Assertion
Ref Expression
squeeze0 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥)) → 𝐴 = 0)
Distinct variable group:   𝑥,𝐴

Proof of Theorem squeeze0
StepHypRef Expression
1 0re 10643 . . . 4 0 ∈ ℝ
2 leloe 10727 . . . 4 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
31, 2mpan 688 . . 3 (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
4 breq2 5070 . . . . . . 7 (𝑥 = 𝐴 → (0 < 𝑥 ↔ 0 < 𝐴))
5 breq2 5070 . . . . . . 7 (𝑥 = 𝐴 → (𝐴 < 𝑥𝐴 < 𝐴))
64, 5imbi12d 347 . . . . . 6 (𝑥 = 𝐴 → ((0 < 𝑥𝐴 < 𝑥) ↔ (0 < 𝐴𝐴 < 𝐴)))
76rspcv 3618 . . . . 5 (𝐴 ∈ ℝ → (∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥) → (0 < 𝐴𝐴 < 𝐴)))
8 ltnr 10735 . . . . . . . . 9 (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴)
98pm2.21d 121 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 < 𝐴𝐴 = 0))
109com12 32 . . . . . . 7 (𝐴 < 𝐴 → (𝐴 ∈ ℝ → 𝐴 = 0))
1110imim2i 16 . . . . . 6 ((0 < 𝐴𝐴 < 𝐴) → (0 < 𝐴 → (𝐴 ∈ ℝ → 𝐴 = 0)))
1211com13 88 . . . . 5 (𝐴 ∈ ℝ → (0 < 𝐴 → ((0 < 𝐴𝐴 < 𝐴) → 𝐴 = 0)))
137, 12syl5d 73 . . . 4 (𝐴 ∈ ℝ → (0 < 𝐴 → (∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥) → 𝐴 = 0)))
14 ax-1 6 . . . . . 6 (𝐴 = 0 → (∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥) → 𝐴 = 0))
1514eqcoms 2829 . . . . 5 (0 = 𝐴 → (∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥) → 𝐴 = 0))
1615a1i 11 . . . 4 (𝐴 ∈ ℝ → (0 = 𝐴 → (∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥) → 𝐴 = 0)))
1713, 16jaod 855 . . 3 (𝐴 ∈ ℝ → ((0 < 𝐴 ∨ 0 = 𝐴) → (∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥) → 𝐴 = 0)))
183, 17sylbid 242 . 2 (𝐴 ∈ ℝ → (0 ≤ 𝐴 → (∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥) → 𝐴 = 0)))
19183imp 1107 1 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥)) → 𝐴 = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wo 843  w3a 1083   = wceq 1537  wcel 2114  wral 3138   class class class wbr 5066  cr 10536  0cc0 10537   < clt 10675  cle 10676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-resscn 10594  ax-1cn 10595  ax-addrcl 10598  ax-rnegex 10608  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator