MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssnei2 Structured version   Visualization version   GIF version

Theorem ssnei2 21724
Description: Any subset 𝑀 of 𝑋 containing a neighborhood 𝑁 of a set 𝑆 is a neighborhood of this set. Generalization to subsets of Property Vi of [BourbakiTop1] p. I.3. (Contributed by FL, 2-Oct-2006.)
Hypothesis
Ref Expression
neips.1 𝑋 = 𝐽
Assertion
Ref Expression
ssnei2 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑁𝑀𝑀𝑋)) → 𝑀 ∈ ((nei‘𝐽)‘𝑆))

Proof of Theorem ssnei2
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 simprr 771 . 2 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑁𝑀𝑀𝑋)) → 𝑀𝑋)
2 neii2 21716 . . . 4 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))
3 sstr2 3974 . . . . . . 7 (𝑔𝑁 → (𝑁𝑀𝑔𝑀))
43com12 32 . . . . . 6 (𝑁𝑀 → (𝑔𝑁𝑔𝑀))
54anim2d 613 . . . . 5 (𝑁𝑀 → ((𝑆𝑔𝑔𝑁) → (𝑆𝑔𝑔𝑀)))
65reximdv 3273 . . . 4 (𝑁𝑀 → (∃𝑔𝐽 (𝑆𝑔𝑔𝑁) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑀)))
72, 6mpan9 509 . . 3 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ 𝑁𝑀) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑀))
87adantrr 715 . 2 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑁𝑀𝑀𝑋)) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑀))
9 neips.1 . . . . 5 𝑋 = 𝐽
109neiss2 21709 . . . 4 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆𝑋)
119isnei 21711 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑀 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑀𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑀))))
1210, 11syldan 593 . . 3 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → (𝑀 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑀𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑀))))
1312adantr 483 . 2 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑁𝑀𝑀𝑋)) → (𝑀 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑀𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑀))))
141, 8, 13mpbir2and 711 1 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑁𝑀𝑀𝑋)) → 𝑀 ∈ ((nei‘𝐽)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wrex 3139  wss 3936   cuni 4838  cfv 6355  Topctop 21501  neicnei 21705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-top 21502  df-nei 21706
This theorem is referenced by:  topssnei  21732  nllyrest  22094  nllyidm  22097  hausllycmp  22102  cldllycmp  22103  txnlly  22245  neifil  22488  utop2nei  22859  cnllycmp  23560  gneispb  40501
  Copyright terms: Public domain W3C validator