MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglinethru Structured version   Visualization version   GIF version

Theorem tglinethru 26422
Description: If 𝐴 is a line containing two distinct points 𝑃 and 𝑄, then 𝐴 is the line through 𝑃 and 𝑄. Theorem 6.18 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 25-May-2019.)
Hypotheses
Ref Expression
tglineelsb2.p 𝐵 = (Base‘𝐺)
tglineelsb2.i 𝐼 = (Itv‘𝐺)
tglineelsb2.l 𝐿 = (LineG‘𝐺)
tglineelsb2.g (𝜑𝐺 ∈ TarskiG)
tglineelsb2.1 (𝜑𝑃𝐵)
tglineelsb2.2 (𝜑𝑄𝐵)
tglineelsb2.4 (𝜑𝑃𝑄)
tglinethru.0 (𝜑𝑃𝑄)
tglinethru.1 (𝜑𝐴 ∈ ran 𝐿)
tglinethru.2 (𝜑𝑃𝐴)
tglinethru.3 (𝜑𝑄𝐴)
Assertion
Ref Expression
tglinethru (𝜑𝐴 = (𝑃𝐿𝑄))

Proof of Theorem tglinethru
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tglineelsb2.p . . . . 5 𝐵 = (Base‘𝐺)
2 tglineelsb2.i . . . . 5 𝐼 = (Itv‘𝐺)
3 tglineelsb2.l . . . . 5 𝐿 = (LineG‘𝐺)
4 tglineelsb2.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
54ad4antr 730 . . . . 5 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → 𝐺 ∈ TarskiG)
6 simp-4r 782 . . . . 5 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → 𝑥𝐵)
7 simpllr 774 . . . . 5 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → 𝑦𝐵)
8 simplrr 776 . . . . 5 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → 𝑥𝑦)
9 tglineelsb2.2 . . . . . 6 (𝜑𝑄𝐵)
109ad4antr 730 . . . . 5 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → 𝑄𝐵)
11 tglinethru.0 . . . . . . . 8 (𝜑𝑃𝑄)
1211ad4antr 730 . . . . . . 7 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → 𝑃𝑄)
1312necomd 3071 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → 𝑄𝑃)
14 simpr 487 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → 𝑃 = 𝑥)
1513, 14neeqtrd 3085 . . . . 5 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → 𝑄𝑥)
16 tglinethru.3 . . . . . . 7 (𝜑𝑄𝐴)
1716ad4antr 730 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → 𝑄𝐴)
18 simplrl 775 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → 𝐴 = (𝑥𝐿𝑦))
1917, 18eleqtrd 2915 . . . . 5 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → 𝑄 ∈ (𝑥𝐿𝑦))
201, 2, 3, 5, 6, 7, 8, 10, 15, 19tglineelsb2 26418 . . . 4 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → (𝑥𝐿𝑦) = (𝑥𝐿𝑄))
2114oveq1d 7171 . . . 4 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → (𝑃𝐿𝑄) = (𝑥𝐿𝑄))
2220, 18, 213eqtr4d 2866 . . 3 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → 𝐴 = (𝑃𝐿𝑄))
23 simplrl 775 . . . . 5 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝐴 = (𝑥𝐿𝑦))
244ad4antr 730 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝐺 ∈ TarskiG)
25 simp-4r 782 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝑥𝐵)
26 simpllr 774 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝑦𝐵)
27 simplrr 776 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝑥𝑦)
28 tglineelsb2.1 . . . . . . 7 (𝜑𝑃𝐵)
2928ad4antr 730 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝑃𝐵)
30 simpr 487 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝑃𝑥)
31 tglinethru.2 . . . . . . . 8 (𝜑𝑃𝐴)
3231ad4antr 730 . . . . . . 7 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝑃𝐴)
3332, 23eleqtrd 2915 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝑃 ∈ (𝑥𝐿𝑦))
341, 2, 3, 24, 25, 26, 27, 29, 30, 33tglineelsb2 26418 . . . . 5 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → (𝑥𝐿𝑦) = (𝑥𝐿𝑃))
3530necomd 3071 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝑥𝑃)
361, 2, 3, 24, 25, 29, 35tglinecom 26421 . . . . 5 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → (𝑥𝐿𝑃) = (𝑃𝐿𝑥))
3723, 34, 363eqtrd 2860 . . . 4 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝐴 = (𝑃𝐿𝑥))
389ad4antr 730 . . . . 5 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝑄𝐵)
3911ad4antr 730 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝑃𝑄)
4039necomd 3071 . . . . 5 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝑄𝑃)
4116ad4antr 730 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝑄𝐴)
4241, 37eleqtrd 2915 . . . . 5 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝑄 ∈ (𝑃𝐿𝑥))
431, 2, 3, 24, 29, 25, 30, 38, 40, 42tglineelsb2 26418 . . . 4 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → (𝑃𝐿𝑥) = (𝑃𝐿𝑄))
4437, 43eqtrd 2856 . . 3 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝐴 = (𝑃𝐿𝑄))
4522, 44pm2.61dane 3104 . 2 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝐴 = (𝑃𝐿𝑄))
46 tglinethru.1 . . 3 (𝜑𝐴 ∈ ran 𝐿)
471, 2, 3, 4, 46tgisline 26413 . 2 (𝜑 → ∃𝑥𝐵𝑦𝐵 (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦))
4845, 47r19.29vva 3336 1 (𝜑𝐴 = (𝑃𝐿𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3016  ran crn 5556  cfv 6355  (class class class)co 7156  Basecbs 16483  TarskiGcstrkg 26216  Itvcitv 26222  LineGclng 26223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-xnn0 11969  df-z 11983  df-uz 12245  df-fz 12894  df-fzo 13035  df-hash 13692  df-word 13863  df-concat 13923  df-s1 13950  df-s2 14210  df-s3 14211  df-trkgc 26234  df-trkgb 26235  df-trkgcb 26236  df-trkg 26239  df-cgrg 26297
This theorem is referenced by:  tghilberti2  26424  tglineintmo  26428  colline  26435  tglowdim2ln  26437  mirln  26462  mirln2  26463  perpneq  26500  ragperp  26503  footexALT  26504  footexlem1  26505  perpdragALT  26513  perpdrag  26514  colperp  26515  opphllem1  26533  opphllem2  26534  opphllem3  26535  opphllem4  26536  opphllem5  26537  opphllem6  26538  oppperpex  26539  opphl  26540  hpgerlem  26551  colhp  26556  lmiisolem  26582  acopy  26619  acopyeu  26620
  Copyright terms: Public domain W3C validator