MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglinethru Structured version   Visualization version   GIF version

Theorem tglinethru 26350
Description: If 𝐴 is a line containing two distinct points 𝑃 and 𝑄, then 𝐴 is the line through 𝑃 and 𝑄. Theorem 6.18 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 25-May-2019.)
Hypotheses
Ref Expression
tglineelsb2.p 𝐵 = (Base‘𝐺)
tglineelsb2.i 𝐼 = (Itv‘𝐺)
tglineelsb2.l 𝐿 = (LineG‘𝐺)
tglineelsb2.g (𝜑𝐺 ∈ TarskiG)
tglineelsb2.1 (𝜑𝑃𝐵)
tglineelsb2.2 (𝜑𝑄𝐵)
tglineelsb2.4 (𝜑𝑃𝑄)
tglinethru.0 (𝜑𝑃𝑄)
tglinethru.1 (𝜑𝐴 ∈ ran 𝐿)
tglinethru.2 (𝜑𝑃𝐴)
tglinethru.3 (𝜑𝑄𝐴)
Assertion
Ref Expression
tglinethru (𝜑𝐴 = (𝑃𝐿𝑄))

Proof of Theorem tglinethru
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tglineelsb2.p . . . . 5 𝐵 = (Base‘𝐺)
2 tglineelsb2.i . . . . 5 𝐼 = (Itv‘𝐺)
3 tglineelsb2.l . . . . 5 𝐿 = (LineG‘𝐺)
4 tglineelsb2.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
54ad4antr 728 . . . . 5 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → 𝐺 ∈ TarskiG)
6 simp-4r 780 . . . . 5 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → 𝑥𝐵)
7 simpllr 772 . . . . 5 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → 𝑦𝐵)
8 simplrr 774 . . . . 5 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → 𝑥𝑦)
9 tglineelsb2.2 . . . . . 6 (𝜑𝑄𝐵)
109ad4antr 728 . . . . 5 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → 𝑄𝐵)
11 tglinethru.0 . . . . . . . 8 (𝜑𝑃𝑄)
1211ad4antr 728 . . . . . . 7 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → 𝑃𝑄)
1312necomd 3071 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → 𝑄𝑃)
14 simpr 485 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → 𝑃 = 𝑥)
1513, 14neeqtrd 3085 . . . . 5 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → 𝑄𝑥)
16 tglinethru.3 . . . . . . 7 (𝜑𝑄𝐴)
1716ad4antr 728 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → 𝑄𝐴)
18 simplrl 773 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → 𝐴 = (𝑥𝐿𝑦))
1917, 18eleqtrd 2915 . . . . 5 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → 𝑄 ∈ (𝑥𝐿𝑦))
201, 2, 3, 5, 6, 7, 8, 10, 15, 19tglineelsb2 26346 . . . 4 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → (𝑥𝐿𝑦) = (𝑥𝐿𝑄))
2114oveq1d 7160 . . . 4 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → (𝑃𝐿𝑄) = (𝑥𝐿𝑄))
2220, 18, 213eqtr4d 2866 . . 3 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → 𝐴 = (𝑃𝐿𝑄))
23 simplrl 773 . . . . 5 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝐴 = (𝑥𝐿𝑦))
244ad4antr 728 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝐺 ∈ TarskiG)
25 simp-4r 780 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝑥𝐵)
26 simpllr 772 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝑦𝐵)
27 simplrr 774 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝑥𝑦)
28 tglineelsb2.1 . . . . . . 7 (𝜑𝑃𝐵)
2928ad4antr 728 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝑃𝐵)
30 simpr 485 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝑃𝑥)
31 tglinethru.2 . . . . . . . 8 (𝜑𝑃𝐴)
3231ad4antr 728 . . . . . . 7 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝑃𝐴)
3332, 23eleqtrd 2915 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝑃 ∈ (𝑥𝐿𝑦))
341, 2, 3, 24, 25, 26, 27, 29, 30, 33tglineelsb2 26346 . . . . 5 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → (𝑥𝐿𝑦) = (𝑥𝐿𝑃))
3530necomd 3071 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝑥𝑃)
361, 2, 3, 24, 25, 29, 35tglinecom 26349 . . . . 5 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → (𝑥𝐿𝑃) = (𝑃𝐿𝑥))
3723, 34, 363eqtrd 2860 . . . 4 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝐴 = (𝑃𝐿𝑥))
389ad4antr 728 . . . . 5 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝑄𝐵)
3911ad4antr 728 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝑃𝑄)
4039necomd 3071 . . . . 5 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝑄𝑃)
4116ad4antr 728 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝑄𝐴)
4241, 37eleqtrd 2915 . . . . 5 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝑄 ∈ (𝑃𝐿𝑥))
431, 2, 3, 24, 29, 25, 30, 38, 40, 42tglineelsb2 26346 . . . 4 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → (𝑃𝐿𝑥) = (𝑃𝐿𝑄))
4437, 43eqtrd 2856 . . 3 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝐴 = (𝑃𝐿𝑄))
4522, 44pm2.61dane 3104 . 2 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝐴 = (𝑃𝐿𝑄))
46 tglinethru.1 . . 3 (𝜑𝐴 ∈ ran 𝐿)
471, 2, 3, 4, 46tgisline 26341 . 2 (𝜑 → ∃𝑥𝐵𝑦𝐵 (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦))
4845, 47r19.29vva 3336 1 (𝜑𝐴 = (𝑃𝐿𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  wne 3016  ran crn 5550  cfv 6349  (class class class)co 7145  Basecbs 16473  TarskiGcstrkg 26144  Itvcitv 26150  LineGclng 26151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4833  df-int 4870  df-iun 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-oadd 8097  df-er 8279  df-pm 8399  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-dju 9319  df-card 9357  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-2 11689  df-3 11690  df-n0 11887  df-xnn0 11957  df-z 11971  df-uz 12233  df-fz 12883  df-fzo 13024  df-hash 13681  df-word 13852  df-concat 13913  df-s1 13940  df-s2 14200  df-s3 14201  df-trkgc 26162  df-trkgb 26163  df-trkgcb 26164  df-trkg 26167  df-cgrg 26225
This theorem is referenced by:  tghilberti2  26352  tglineintmo  26356  colline  26363  tglowdim2ln  26365  mirln  26390  mirln2  26391  perpneq  26428  ragperp  26431  footexALT  26432  footexlem1  26433  perpdragALT  26441  perpdrag  26442  colperp  26443  opphllem1  26461  opphllem2  26462  opphllem3  26463  opphllem4  26464  opphllem5  26465  opphllem6  26466  oppperpex  26467  opphl  26468  hpgerlem  26479  colhp  26484  lmiisolem  26510  acopy  26547  acopyeu  26548
  Copyright terms: Public domain W3C validator