MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgsegconeq Structured version   Visualization version   GIF version

Theorem tgsegconeq 25098
Description: Two points that satisfy the conclusion of axtgsegcon 25080 are identical. Uniqueness portion of Theorem 2.12 of [Schwabhauser] p. 29. (Contributed by Thierry Arnoux, 23-Mar-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgcgrextend.a (𝜑𝐴𝑃)
tgcgrextend.b (𝜑𝐵𝑃)
tgcgrextend.c (𝜑𝐶𝑃)
tgcgrextend.d (𝜑𝐷𝑃)
tgcgrextend.e (𝜑𝐸𝑃)
tgcgrextend.f (𝜑𝐹𝑃)
tgsegconeq.1 (𝜑𝐷𝐴)
tgsegconeq.2 (𝜑𝐴 ∈ (𝐷𝐼𝐸))
tgsegconeq.3 (𝜑𝐴 ∈ (𝐷𝐼𝐹))
tgsegconeq.4 (𝜑 → (𝐴 𝐸) = (𝐵 𝐶))
tgsegconeq.5 (𝜑 → (𝐴 𝐹) = (𝐵 𝐶))
Assertion
Ref Expression
tgsegconeq (𝜑𝐸 = 𝐹)

Proof of Theorem tgsegconeq
StepHypRef Expression
1 tkgeom.p . 2 𝑃 = (Base‘𝐺)
2 tkgeom.d . 2 = (dist‘𝐺)
3 tkgeom.i . 2 𝐼 = (Itv‘𝐺)
4 tkgeom.g . 2 (𝜑𝐺 ∈ TarskiG)
5 tgcgrextend.e . 2 (𝜑𝐸𝑃)
6 tgcgrextend.f . 2 (𝜑𝐹𝑃)
7 tgcgrextend.d . . . 4 (𝜑𝐷𝑃)
8 tgcgrextend.a . . . 4 (𝜑𝐴𝑃)
9 tgsegconeq.1 . . . 4 (𝜑𝐷𝐴)
10 tgsegconeq.2 . . . 4 (𝜑𝐴 ∈ (𝐷𝐼𝐸))
11 eqidd 2610 . . . 4 (𝜑 → (𝐷 𝐴) = (𝐷 𝐴))
12 eqidd 2610 . . . 4 (𝜑 → (𝐴 𝐸) = (𝐴 𝐸))
13 tgsegconeq.3 . . . . 5 (𝜑𝐴 ∈ (𝐷𝐼𝐹))
14 tgsegconeq.4 . . . . . 6 (𝜑 → (𝐴 𝐸) = (𝐵 𝐶))
15 tgsegconeq.5 . . . . . 6 (𝜑 → (𝐴 𝐹) = (𝐵 𝐶))
1614, 15eqtr4d 2646 . . . . 5 (𝜑 → (𝐴 𝐸) = (𝐴 𝐹))
171, 2, 3, 4, 7, 8, 5, 7, 8, 6, 10, 13, 11, 16tgcgrextend 25097 . . . 4 (𝜑 → (𝐷 𝐸) = (𝐷 𝐹))
181, 2, 3, 4, 7, 8, 5, 7, 8, 5, 5, 6, 9, 10, 10, 11, 12, 17, 16axtg5seg 25081 . . 3 (𝜑 → (𝐸 𝐸) = (𝐸 𝐹))
1918eqcomd 2615 . 2 (𝜑 → (𝐸 𝐹) = (𝐸 𝐸))
201, 2, 3, 4, 5, 6, 5, 19axtgcgrid 25079 1 (𝜑𝐸 = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1474  wcel 1976  wne 2779  cfv 5790  (class class class)co 6527  Basecbs 15641  distcds 15723  TarskiGcstrkg 25046  Itvcitv 25052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-nul 4712
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-sbc 3402  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-br 4578  df-iota 5754  df-fv 5798  df-ov 6530  df-trkgc 25064  df-trkgcb 25066  df-trkg 25069
This theorem is referenced by:  tgbtwnouttr2  25107  tgcgrxfr  25131  tgbtwnconn1lem1  25185  hlcgreulem  25230  mirreu3  25267
  Copyright terms: Public domain W3C validator