MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskord Structured version   Visualization version   GIF version

Theorem tskord 10202
Description: A Tarski class contains all ordinals smaller than it. (Contributed by Mario Carneiro, 8-Jun-2013.)
Assertion
Ref Expression
tskord ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴𝑇) → 𝐴𝑇)

Proof of Theorem tskord
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5069 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝑇𝑦𝑇))
21anbi2d 630 . . . . 5 (𝑥 = 𝑦 → ((𝑇 ∈ Tarski ∧ 𝑥𝑇) ↔ (𝑇 ∈ Tarski ∧ 𝑦𝑇)))
3 eleq1 2900 . . . . 5 (𝑥 = 𝑦 → (𝑥𝑇𝑦𝑇))
42, 3imbi12d 347 . . . 4 (𝑥 = 𝑦 → (((𝑇 ∈ Tarski ∧ 𝑥𝑇) → 𝑥𝑇) ↔ ((𝑇 ∈ Tarski ∧ 𝑦𝑇) → 𝑦𝑇)))
5 breq1 5069 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝑇𝐴𝑇))
65anbi2d 630 . . . . 5 (𝑥 = 𝐴 → ((𝑇 ∈ Tarski ∧ 𝑥𝑇) ↔ (𝑇 ∈ Tarski ∧ 𝐴𝑇)))
7 eleq1 2900 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑇𝐴𝑇))
86, 7imbi12d 347 . . . 4 (𝑥 = 𝐴 → (((𝑇 ∈ Tarski ∧ 𝑥𝑇) → 𝑥𝑇) ↔ ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝐴𝑇)))
9 simplrl 775 . . . . . . . . 9 (((𝑥 ∈ On ∧ (𝑇 ∈ Tarski ∧ 𝑥𝑇)) ∧ 𝑦𝑥) → 𝑇 ∈ Tarski)
10 onelss 6233 . . . . . . . . . . . . 13 (𝑥 ∈ On → (𝑦𝑥𝑦𝑥))
11 ssdomg 8555 . . . . . . . . . . . . 13 (𝑥 ∈ On → (𝑦𝑥𝑦𝑥))
1210, 11syld 47 . . . . . . . . . . . 12 (𝑥 ∈ On → (𝑦𝑥𝑦𝑥))
1312imp 409 . . . . . . . . . . 11 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦𝑥)
1413adantlr 713 . . . . . . . . . 10 (((𝑥 ∈ On ∧ (𝑇 ∈ Tarski ∧ 𝑥𝑇)) ∧ 𝑦𝑥) → 𝑦𝑥)
15 simplrr 776 . . . . . . . . . 10 (((𝑥 ∈ On ∧ (𝑇 ∈ Tarski ∧ 𝑥𝑇)) ∧ 𝑦𝑥) → 𝑥𝑇)
16 domsdomtr 8652 . . . . . . . . . 10 ((𝑦𝑥𝑥𝑇) → 𝑦𝑇)
1714, 15, 16syl2anc 586 . . . . . . . . 9 (((𝑥 ∈ On ∧ (𝑇 ∈ Tarski ∧ 𝑥𝑇)) ∧ 𝑦𝑥) → 𝑦𝑇)
18 pm2.27 42 . . . . . . . . 9 ((𝑇 ∈ Tarski ∧ 𝑦𝑇) → (((𝑇 ∈ Tarski ∧ 𝑦𝑇) → 𝑦𝑇) → 𝑦𝑇))
199, 17, 18syl2anc 586 . . . . . . . 8 (((𝑥 ∈ On ∧ (𝑇 ∈ Tarski ∧ 𝑥𝑇)) ∧ 𝑦𝑥) → (((𝑇 ∈ Tarski ∧ 𝑦𝑇) → 𝑦𝑇) → 𝑦𝑇))
2019ralimdva 3177 . . . . . . 7 ((𝑥 ∈ On ∧ (𝑇 ∈ Tarski ∧ 𝑥𝑇)) → (∀𝑦𝑥 ((𝑇 ∈ Tarski ∧ 𝑦𝑇) → 𝑦𝑇) → ∀𝑦𝑥 𝑦𝑇))
21 dfss3 3956 . . . . . . . . . . 11 (𝑥𝑇 ↔ ∀𝑦𝑥 𝑦𝑇)
22 tskssel 10179 . . . . . . . . . . . 12 ((𝑇 ∈ Tarski ∧ 𝑥𝑇𝑥𝑇) → 𝑥𝑇)
23223exp 1115 . . . . . . . . . . 11 (𝑇 ∈ Tarski → (𝑥𝑇 → (𝑥𝑇𝑥𝑇)))
2421, 23syl5bir 245 . . . . . . . . . 10 (𝑇 ∈ Tarski → (∀𝑦𝑥 𝑦𝑇 → (𝑥𝑇𝑥𝑇)))
2524com23 86 . . . . . . . . 9 (𝑇 ∈ Tarski → (𝑥𝑇 → (∀𝑦𝑥 𝑦𝑇𝑥𝑇)))
2625imp 409 . . . . . . . 8 ((𝑇 ∈ Tarski ∧ 𝑥𝑇) → (∀𝑦𝑥 𝑦𝑇𝑥𝑇))
2726adantl 484 . . . . . . 7 ((𝑥 ∈ On ∧ (𝑇 ∈ Tarski ∧ 𝑥𝑇)) → (∀𝑦𝑥 𝑦𝑇𝑥𝑇))
2820, 27syld 47 . . . . . 6 ((𝑥 ∈ On ∧ (𝑇 ∈ Tarski ∧ 𝑥𝑇)) → (∀𝑦𝑥 ((𝑇 ∈ Tarski ∧ 𝑦𝑇) → 𝑦𝑇) → 𝑥𝑇))
2928ex 415 . . . . 5 (𝑥 ∈ On → ((𝑇 ∈ Tarski ∧ 𝑥𝑇) → (∀𝑦𝑥 ((𝑇 ∈ Tarski ∧ 𝑦𝑇) → 𝑦𝑇) → 𝑥𝑇)))
3029com23 86 . . . 4 (𝑥 ∈ On → (∀𝑦𝑥 ((𝑇 ∈ Tarski ∧ 𝑦𝑇) → 𝑦𝑇) → ((𝑇 ∈ Tarski ∧ 𝑥𝑇) → 𝑥𝑇)))
314, 8, 30tfis3 7572 . . 3 (𝐴 ∈ On → ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝐴𝑇))
32313impib 1112 . 2 ((𝐴 ∈ On ∧ 𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝐴𝑇)
33323com12 1119 1 ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴𝑇) → 𝐴𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3138  wss 3936   class class class wbr 5066  Oncon0 6191  cdom 8507  csdm 8508  Tarskictsk 10170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-ord 6194  df-on 6195  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-tsk 10171
This theorem is referenced by:  tskcard  10203
  Copyright terms: Public domain W3C validator