MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniwf Structured version   Visualization version   GIF version

Theorem uniwf 9234
Description: A union is well-founded iff the base set is. (Contributed by Mario Carneiro, 8-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
uniwf (𝐴 (𝑅1 “ On) ↔ 𝐴 (𝑅1 “ On))

Proof of Theorem uniwf
StepHypRef Expression
1 r1tr 9191 . . . . . . . 8 Tr (𝑅1‘suc (rank‘𝐴))
2 rankidb 9215 . . . . . . . 8 (𝐴 (𝑅1 “ On) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)))
3 trss 5167 . . . . . . . 8 (Tr (𝑅1‘suc (rank‘𝐴)) → (𝐴 ∈ (𝑅1‘suc (rank‘𝐴)) → 𝐴 ⊆ (𝑅1‘suc (rank‘𝐴))))
41, 2, 3mpsyl 68 . . . . . . 7 (𝐴 (𝑅1 “ On) → 𝐴 ⊆ (𝑅1‘suc (rank‘𝐴)))
5 rankdmr1 9216 . . . . . . . 8 (rank‘𝐴) ∈ dom 𝑅1
6 r1sucg 9184 . . . . . . . 8 ((rank‘𝐴) ∈ dom 𝑅1 → (𝑅1‘suc (rank‘𝐴)) = 𝒫 (𝑅1‘(rank‘𝐴)))
75, 6ax-mp 5 . . . . . . 7 (𝑅1‘suc (rank‘𝐴)) = 𝒫 (𝑅1‘(rank‘𝐴))
84, 7sseqtrdi 4005 . . . . . 6 (𝐴 (𝑅1 “ On) → 𝐴 ⊆ 𝒫 (𝑅1‘(rank‘𝐴)))
9 sspwuni 5008 . . . . . 6 (𝐴 ⊆ 𝒫 (𝑅1‘(rank‘𝐴)) ↔ 𝐴 ⊆ (𝑅1‘(rank‘𝐴)))
108, 9sylib 220 . . . . 5 (𝐴 (𝑅1 “ On) → 𝐴 ⊆ (𝑅1‘(rank‘𝐴)))
11 fvex 6669 . . . . . 6 (𝑅1‘(rank‘𝐴)) ∈ V
1211elpw2 5234 . . . . 5 ( 𝐴 ∈ 𝒫 (𝑅1‘(rank‘𝐴)) ↔ 𝐴 ⊆ (𝑅1‘(rank‘𝐴)))
1310, 12sylibr 236 . . . 4 (𝐴 (𝑅1 “ On) → 𝐴 ∈ 𝒫 (𝑅1‘(rank‘𝐴)))
1413, 7eleqtrrdi 2924 . . 3 (𝐴 (𝑅1 “ On) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)))
15 r1elwf 9211 . . 3 ( 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)) → 𝐴 (𝑅1 “ On))
1614, 15syl 17 . 2 (𝐴 (𝑅1 “ On) → 𝐴 (𝑅1 “ On))
17 pwwf 9222 . . 3 ( 𝐴 (𝑅1 “ On) ↔ 𝒫 𝐴 (𝑅1 “ On))
18 pwuni 4861 . . . 4 𝐴 ⊆ 𝒫 𝐴
19 sswf 9223 . . . 4 ((𝒫 𝐴 (𝑅1 “ On) ∧ 𝐴 ⊆ 𝒫 𝐴) → 𝐴 (𝑅1 “ On))
2018, 19mpan2 689 . . 3 (𝒫 𝐴 (𝑅1 “ On) → 𝐴 (𝑅1 “ On))
2117, 20sylbi 219 . 2 ( 𝐴 (𝑅1 “ On) → 𝐴 (𝑅1 “ On))
2216, 21impbii 211 1 (𝐴 (𝑅1 “ On) ↔ 𝐴 (𝑅1 “ On))
Colors of variables: wff setvar class
Syntax hints:  wb 208   = wceq 1537  wcel 2114  wss 3924  𝒫 cpw 4525   cuni 4824  Tr wtr 5158  dom cdm 5541  cima 5544  Oncon0 6177  suc csuc 6179  cfv 6341  𝑅1cr1 9177  rankcrnk 9178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-pss 3942  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-tp 4558  df-op 4560  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5446  df-eprel 5451  df-po 5460  df-so 5461  df-fr 5500  df-we 5502  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-pred 6134  df-ord 6180  df-on 6181  df-lim 6182  df-suc 6183  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-om 7567  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-r1 9179  df-rank 9180
This theorem is referenced by:  rankuni2b  9268  r1limwun  10144  wfgru  10224
  Copyright terms: Public domain W3C validator