MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankdmr1 Structured version   Visualization version   GIF version

Theorem rankdmr1 8609
Description: A rank is a member of the cumulative hierarchy. (Contributed by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankdmr1 (rank‘𝐴) ∈ dom 𝑅1

Proof of Theorem rankdmr1
StepHypRef Expression
1 rankidb 8608 . . . 4 (𝐴 (𝑅1 “ On) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)))
2 elfvdm 6178 . . . 4 (𝐴 ∈ (𝑅1‘suc (rank‘𝐴)) → suc (rank‘𝐴) ∈ dom 𝑅1)
31, 2syl 17 . . 3 (𝐴 (𝑅1 “ On) → suc (rank‘𝐴) ∈ dom 𝑅1)
4 r1funlim 8574 . . . . 5 (Fun 𝑅1 ∧ Lim dom 𝑅1)
54simpri 478 . . . 4 Lim dom 𝑅1
6 limsuc 6997 . . . 4 (Lim dom 𝑅1 → ((rank‘𝐴) ∈ dom 𝑅1 ↔ suc (rank‘𝐴) ∈ dom 𝑅1))
75, 6ax-mp 5 . . 3 ((rank‘𝐴) ∈ dom 𝑅1 ↔ suc (rank‘𝐴) ∈ dom 𝑅1)
83, 7sylibr 224 . 2 (𝐴 (𝑅1 “ On) → (rank‘𝐴) ∈ dom 𝑅1)
9 rankvaln 8607 . . 3 𝐴 (𝑅1 “ On) → (rank‘𝐴) = ∅)
10 limomss 7018 . . . . 5 (Lim dom 𝑅1 → ω ⊆ dom 𝑅1)
115, 10ax-mp 5 . . . 4 ω ⊆ dom 𝑅1
12 peano1 7033 . . . 4 ∅ ∈ ω
1311, 12sselii 3585 . . 3 ∅ ∈ dom 𝑅1
149, 13syl6eqel 2712 . 2 𝐴 (𝑅1 “ On) → (rank‘𝐴) ∈ dom 𝑅1)
158, 14pm2.61i 176 1 (rank‘𝐴) ∈ dom 𝑅1
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wcel 1992  wss 3560  c0 3896   cuni 4407  dom cdm 5079  cima 5082  Oncon0 5685  Lim wlim 5686  suc csuc 5687  Fun wfun 5844  cfv 5850  ωcom 7013  𝑅1cr1 8570  rankcrnk 8571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-om 7014  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-r1 8572  df-rank 8573
This theorem is referenced by:  r1rankidb  8612  pwwf  8615  unwf  8618  uniwf  8627  rankr1c  8629  rankelb  8632  rankval3b  8634  rankonid  8637  rankssb  8656  rankr1id  8670
  Copyright terms: Public domain W3C validator