MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfr2 Structured version   Visualization version   GIF version

Theorem wfr2 7974
Description: The Principle of Well-Founded Recursion, part 2 of 3. Next, we show that the value of 𝐹 at any 𝑋𝐴 is 𝐺 recursively applied to all "previous" values of 𝐹. (Contributed by Scott Fenton, 18-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
wfr2.1 𝑅 We 𝐴
wfr2.2 𝑅 Se 𝐴
wfr2.3 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
wfr2 (𝑋𝐴 → (𝐹𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))))

Proof of Theorem wfr2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 wfr2.1 . . . 4 𝑅 We 𝐴
2 wfr2.2 . . . 4 𝑅 Se 𝐴
3 wfr2.3 . . . 4 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
4 eqid 2821 . . . 4 (𝐹 ∪ {⟨𝑥, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑥)))⟩}) = (𝐹 ∪ {⟨𝑥, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑥)))⟩})
51, 2, 3, 4wfrlem16 7970 . . 3 dom 𝐹 = 𝐴
65eleq2i 2904 . 2 (𝑋 ∈ dom 𝐹𝑋𝐴)
71, 2, 3wfr2a 7972 . 2 (𝑋 ∈ dom 𝐹 → (𝐹𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))))
86, 7sylbir 237 1 (𝑋𝐴 → (𝐹𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  cun 3934  {csn 4567  cop 4573   Se wse 5512   We wwe 5513  dom cdm 5555  cres 5557  Predcpred 6147  cfv 6355  wrecscwrecs 7946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-wrecs 7947
This theorem is referenced by:  wfr3  7975  tfr2ALT  8037  bpolylem  15402
  Copyright terms: Public domain W3C validator