MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpfir Structured version   Visualization version   GIF version

Theorem xpfir 8740
Description: The components of a nonempty finite Cartesian product are finite. (Contributed by Paul Chapman, 11-Apr-2009.) (Proof shortened by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
xpfir (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin))

Proof of Theorem xpfir
StepHypRef Expression
1 xpexr2 7624 . . . . 5 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
21simpld 497 . . . 4 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → 𝐴 ∈ V)
31simprd 498 . . . 4 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → 𝐵 ∈ V)
4 simpr 487 . . . . . 6 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 × 𝐵) ≠ ∅)
5 xpnz 6016 . . . . . 6 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅)
64, 5sylibr 236 . . . . 5 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅))
76simprd 498 . . . 4 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → 𝐵 ≠ ∅)
8 xpdom3 8615 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐵 ≠ ∅) → 𝐴 ≼ (𝐴 × 𝐵))
92, 3, 7, 8syl3anc 1367 . . 3 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → 𝐴 ≼ (𝐴 × 𝐵))
10 domfi 8739 . . 3 (((𝐴 × 𝐵) ∈ Fin ∧ 𝐴 ≼ (𝐴 × 𝐵)) → 𝐴 ∈ Fin)
119, 10syldan 593 . 2 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → 𝐴 ∈ Fin)
126simpld 497 . . . . 5 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → 𝐴 ≠ ∅)
13 xpdom3 8615 . . . . 5 ((𝐵 ∈ V ∧ 𝐴 ∈ V ∧ 𝐴 ≠ ∅) → 𝐵 ≼ (𝐵 × 𝐴))
143, 2, 12, 13syl3anc 1367 . . . 4 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → 𝐵 ≼ (𝐵 × 𝐴))
15 xpcomeng 8609 . . . . 5 ((𝐵 ∈ V ∧ 𝐴 ∈ V) → (𝐵 × 𝐴) ≈ (𝐴 × 𝐵))
163, 2, 15syl2anc 586 . . . 4 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐵 × 𝐴) ≈ (𝐴 × 𝐵))
17 domentr 8568 . . . 4 ((𝐵 ≼ (𝐵 × 𝐴) ∧ (𝐵 × 𝐴) ≈ (𝐴 × 𝐵)) → 𝐵 ≼ (𝐴 × 𝐵))
1814, 16, 17syl2anc 586 . . 3 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → 𝐵 ≼ (𝐴 × 𝐵))
19 domfi 8739 . . 3 (((𝐴 × 𝐵) ∈ Fin ∧ 𝐵 ≼ (𝐴 × 𝐵)) → 𝐵 ∈ Fin)
2018, 19syldan 593 . 2 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → 𝐵 ∈ Fin)
2111, 20jca 514 1 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wcel 2114  wne 3016  Vcvv 3494  c0 4291   class class class wbr 5066   × cxp 5553  cen 8506  cdom 8507  Fincfn 8509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-om 7581  df-1st 7689  df-2nd 7690  df-er 8289  df-en 8510  df-dom 8511  df-fin 8513
This theorem is referenced by:  hashxpe  30529
  Copyright terms: Public domain W3C validator