MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpssres Structured version   Visualization version   GIF version

Theorem xpssres 5341
Description: Restriction of a constant function (or other Cartesian product). (Contributed by Stefan O'Rear, 24-Jan-2015.)
Assertion
Ref Expression
xpssres (𝐶𝐴 → ((𝐴 × 𝐵) ↾ 𝐶) = (𝐶 × 𝐵))

Proof of Theorem xpssres
StepHypRef Expression
1 df-res 5040 . . 3 ((𝐴 × 𝐵) ↾ 𝐶) = ((𝐴 × 𝐵) ∩ (𝐶 × V))
2 inxp 5164 . . 3 ((𝐴 × 𝐵) ∩ (𝐶 × V)) = ((𝐴𝐶) × (𝐵 ∩ V))
3 inv1 3921 . . . 4 (𝐵 ∩ V) = 𝐵
43xpeq2i 5050 . . 3 ((𝐴𝐶) × (𝐵 ∩ V)) = ((𝐴𝐶) × 𝐵)
51, 2, 43eqtri 2635 . 2 ((𝐴 × 𝐵) ↾ 𝐶) = ((𝐴𝐶) × 𝐵)
6 sseqin2 3778 . . . 4 (𝐶𝐴 ↔ (𝐴𝐶) = 𝐶)
76biimpi 204 . . 3 (𝐶𝐴 → (𝐴𝐶) = 𝐶)
87xpeq1d 5052 . 2 (𝐶𝐴 → ((𝐴𝐶) × 𝐵) = (𝐶 × 𝐵))
95, 8syl5eq 2655 1 (𝐶𝐴 → ((𝐴 × 𝐵) ↾ 𝐶) = (𝐶 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1474  Vcvv 3172  cin 3538  wss 3539   × cxp 5026  cres 5030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pr 4828
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-sn 4125  df-pr 4127  df-op 4131  df-opab 4638  df-xp 5034  df-rel 5035  df-res 5040
This theorem is referenced by:  fparlem3  7143  fparlem4  7144  fpwwe2lem13  9320  pwssplit3  18828  cnconst2  20839  xkoccn  21174  tmdgsum  21651  dvcmul  23430  dvcmulf  23431  dvsconst  37354  dvsid  37355  aacllem  42319
  Copyright terms: Public domain W3C validator