MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcmulf Structured version   Visualization version   GIF version

Theorem dvcmulf 23927
Description: The product rule when one argument is a constant. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Hypotheses
Ref Expression
dvcmul.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvcmul.f (𝜑𝐹:𝑋⟶ℂ)
dvcmul.a (𝜑𝐴 ∈ ℂ)
dvcmulf.df (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
Assertion
Ref Expression
dvcmulf (𝜑 → (𝑆 D ((𝑆 × {𝐴}) ∘𝑓 · 𝐹)) = ((𝑆 × {𝐴}) ∘𝑓 · (𝑆 D 𝐹)))

Proof of Theorem dvcmulf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dvcmul.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
2 dvcmul.a . . . . 5 (𝜑𝐴 ∈ ℂ)
3 fconstg 6253 . . . . 5 (𝐴 ∈ ℂ → (𝑋 × {𝐴}):𝑋⟶{𝐴})
42, 3syl 17 . . . 4 (𝜑 → (𝑋 × {𝐴}):𝑋⟶{𝐴})
52snssd 4485 . . . 4 (𝜑 → {𝐴} ⊆ ℂ)
64, 5fssd 6218 . . 3 (𝜑 → (𝑋 × {𝐴}):𝑋⟶ℂ)
7 dvcmul.f . . 3 (𝜑𝐹:𝑋⟶ℂ)
8 c0ex 10246 . . . . . 6 0 ∈ V
98fconst 6252 . . . . 5 (𝑋 × {0}):𝑋⟶{0}
10 recnprss 23887 . . . . . . . . 9 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
111, 10syl 17 . . . . . . . 8 (𝜑𝑆 ⊆ ℂ)
12 fconstg 6253 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝑆 × {𝐴}):𝑆⟶{𝐴})
132, 12syl 17 . . . . . . . . 9 (𝜑 → (𝑆 × {𝐴}):𝑆⟶{𝐴})
1413, 5fssd 6218 . . . . . . . 8 (𝜑 → (𝑆 × {𝐴}):𝑆⟶ℂ)
15 ssid 3765 . . . . . . . . 9 𝑆𝑆
1615a1i 11 . . . . . . . 8 (𝜑𝑆𝑆)
17 dvcmulf.df . . . . . . . . 9 (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
18 dvbsss 23885 . . . . . . . . . 10 dom (𝑆 D 𝐹) ⊆ 𝑆
1918a1i 11 . . . . . . . . 9 (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝑆)
2017, 19eqsstr3d 3781 . . . . . . . 8 (𝜑𝑋𝑆)
21 eqid 2760 . . . . . . . . 9 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
22 eqid 2760 . . . . . . . . 9 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
2321, 22dvres 23894 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ (𝑆 × {𝐴}):𝑆⟶ℂ) ∧ (𝑆𝑆𝑋𝑆)) → (𝑆 D ((𝑆 × {𝐴}) ↾ 𝑋)) = ((𝑆 D (𝑆 × {𝐴})) ↾ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋)))
2411, 14, 16, 20, 23syl22anc 1478 . . . . . . 7 (𝜑 → (𝑆 D ((𝑆 × {𝐴}) ↾ 𝑋)) = ((𝑆 D (𝑆 × {𝐴})) ↾ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋)))
2520resmptd 5610 . . . . . . . . 9 (𝜑 → ((𝑥𝑆𝐴) ↾ 𝑋) = (𝑥𝑋𝐴))
26 fconstmpt 5320 . . . . . . . . . 10 (𝑆 × {𝐴}) = (𝑥𝑆𝐴)
2726reseq1i 5547 . . . . . . . . 9 ((𝑆 × {𝐴}) ↾ 𝑋) = ((𝑥𝑆𝐴) ↾ 𝑋)
28 fconstmpt 5320 . . . . . . . . 9 (𝑋 × {𝐴}) = (𝑥𝑋𝐴)
2925, 27, 283eqtr4g 2819 . . . . . . . 8 (𝜑 → ((𝑆 × {𝐴}) ↾ 𝑋) = (𝑋 × {𝐴}))
3029oveq2d 6830 . . . . . . 7 (𝜑 → (𝑆 D ((𝑆 × {𝐴}) ↾ 𝑋)) = (𝑆 D (𝑋 × {𝐴})))
3120resmptd 5610 . . . . . . . 8 (𝜑 → ((𝑥𝑆 ↦ 0) ↾ 𝑋) = (𝑥𝑋 ↦ 0))
32 fconstg 6253 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (ℂ × {𝐴}):ℂ⟶{𝐴})
332, 32syl 17 . . . . . . . . . . . . 13 (𝜑 → (ℂ × {𝐴}):ℂ⟶{𝐴})
3433, 5fssd 6218 . . . . . . . . . . . 12 (𝜑 → (ℂ × {𝐴}):ℂ⟶ℂ)
35 ssid 3765 . . . . . . . . . . . . 13 ℂ ⊆ ℂ
3635a1i 11 . . . . . . . . . . . 12 (𝜑 → ℂ ⊆ ℂ)
37 dvconst 23899 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (ℂ D (ℂ × {𝐴})) = (ℂ × {0}))
382, 37syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (ℂ D (ℂ × {𝐴})) = (ℂ × {0}))
3938dmeqd 5481 . . . . . . . . . . . . . 14 (𝜑 → dom (ℂ D (ℂ × {𝐴})) = dom (ℂ × {0}))
408fconst 6252 . . . . . . . . . . . . . . 15 (ℂ × {0}):ℂ⟶{0}
4140fdmi 6213 . . . . . . . . . . . . . 14 dom (ℂ × {0}) = ℂ
4239, 41syl6eq 2810 . . . . . . . . . . . . 13 (𝜑 → dom (ℂ D (ℂ × {𝐴})) = ℂ)
4311, 42sseqtr4d 3783 . . . . . . . . . . . 12 (𝜑𝑆 ⊆ dom (ℂ D (ℂ × {𝐴})))
44 dvres3 23896 . . . . . . . . . . . 12 (((𝑆 ∈ {ℝ, ℂ} ∧ (ℂ × {𝐴}):ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ 𝑆 ⊆ dom (ℂ D (ℂ × {𝐴})))) → (𝑆 D ((ℂ × {𝐴}) ↾ 𝑆)) = ((ℂ D (ℂ × {𝐴})) ↾ 𝑆))
451, 34, 36, 43, 44syl22anc 1478 . . . . . . . . . . 11 (𝜑 → (𝑆 D ((ℂ × {𝐴}) ↾ 𝑆)) = ((ℂ D (ℂ × {𝐴})) ↾ 𝑆))
46 xpssres 5592 . . . . . . . . . . . . 13 (𝑆 ⊆ ℂ → ((ℂ × {𝐴}) ↾ 𝑆) = (𝑆 × {𝐴}))
4711, 46syl 17 . . . . . . . . . . . 12 (𝜑 → ((ℂ × {𝐴}) ↾ 𝑆) = (𝑆 × {𝐴}))
4847oveq2d 6830 . . . . . . . . . . 11 (𝜑 → (𝑆 D ((ℂ × {𝐴}) ↾ 𝑆)) = (𝑆 D (𝑆 × {𝐴})))
4938reseq1d 5550 . . . . . . . . . . . 12 (𝜑 → ((ℂ D (ℂ × {𝐴})) ↾ 𝑆) = ((ℂ × {0}) ↾ 𝑆))
50 xpssres 5592 . . . . . . . . . . . . 13 (𝑆 ⊆ ℂ → ((ℂ × {0}) ↾ 𝑆) = (𝑆 × {0}))
5111, 50syl 17 . . . . . . . . . . . 12 (𝜑 → ((ℂ × {0}) ↾ 𝑆) = (𝑆 × {0}))
5249, 51eqtrd 2794 . . . . . . . . . . 11 (𝜑 → ((ℂ D (ℂ × {𝐴})) ↾ 𝑆) = (𝑆 × {0}))
5345, 48, 523eqtr3d 2802 . . . . . . . . . 10 (𝜑 → (𝑆 D (𝑆 × {𝐴})) = (𝑆 × {0}))
54 fconstmpt 5320 . . . . . . . . . 10 (𝑆 × {0}) = (𝑥𝑆 ↦ 0)
5553, 54syl6eq 2810 . . . . . . . . 9 (𝜑 → (𝑆 D (𝑆 × {𝐴})) = (𝑥𝑆 ↦ 0))
5621cnfldtopon 22807 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
57 resttopon 21187 . . . . . . . . . . . . 13 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
5856, 11, 57sylancr 698 . . . . . . . . . . . 12 (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
59 topontop 20940 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top)
6058, 59syl 17 . . . . . . . . . . 11 (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top)
61 toponuni 20941 . . . . . . . . . . . . 13 (((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = ((TopOpen‘ℂfld) ↾t 𝑆))
6258, 61syl 17 . . . . . . . . . . . 12 (𝜑𝑆 = ((TopOpen‘ℂfld) ↾t 𝑆))
6320, 62sseqtrd 3782 . . . . . . . . . . 11 (𝜑𝑋 ((TopOpen‘ℂfld) ↾t 𝑆))
64 eqid 2760 . . . . . . . . . . . 12 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
6564ntrss2 21083 . . . . . . . . . . 11 ((((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top ∧ 𝑋 ((TopOpen‘ℂfld) ↾t 𝑆)) → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ⊆ 𝑋)
6660, 63, 65syl2anc 696 . . . . . . . . . 10 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ⊆ 𝑋)
6711, 7, 20, 22, 21dvbssntr 23883 . . . . . . . . . . 11 (𝜑 → dom (𝑆 D 𝐹) ⊆ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋))
6817, 67eqsstr3d 3781 . . . . . . . . . 10 (𝜑𝑋 ⊆ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋))
6966, 68eqssd 3761 . . . . . . . . 9 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) = 𝑋)
7055, 69reseq12d 5552 . . . . . . . 8 (𝜑 → ((𝑆 D (𝑆 × {𝐴})) ↾ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋)) = ((𝑥𝑆 ↦ 0) ↾ 𝑋))
71 fconstmpt 5320 . . . . . . . . 9 (𝑋 × {0}) = (𝑥𝑋 ↦ 0)
7271a1i 11 . . . . . . . 8 (𝜑 → (𝑋 × {0}) = (𝑥𝑋 ↦ 0))
7331, 70, 723eqtr4d 2804 . . . . . . 7 (𝜑 → ((𝑆 D (𝑆 × {𝐴})) ↾ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋)) = (𝑋 × {0}))
7424, 30, 733eqtr3d 2802 . . . . . 6 (𝜑 → (𝑆 D (𝑋 × {𝐴})) = (𝑋 × {0}))
7574feq1d 6191 . . . . 5 (𝜑 → ((𝑆 D (𝑋 × {𝐴})):𝑋⟶{0} ↔ (𝑋 × {0}):𝑋⟶{0}))
769, 75mpbiri 248 . . . 4 (𝜑 → (𝑆 D (𝑋 × {𝐴})):𝑋⟶{0})
77 fdm 6212 . . . 4 ((𝑆 D (𝑋 × {𝐴})):𝑋⟶{0} → dom (𝑆 D (𝑋 × {𝐴})) = 𝑋)
7876, 77syl 17 . . 3 (𝜑 → dom (𝑆 D (𝑋 × {𝐴})) = 𝑋)
791, 6, 7, 78, 17dvmulf 23925 . 2 (𝜑 → (𝑆 D ((𝑋 × {𝐴}) ∘𝑓 · 𝐹)) = (((𝑆 D (𝑋 × {𝐴})) ∘𝑓 · 𝐹) ∘𝑓 + ((𝑆 D 𝐹) ∘𝑓 · (𝑋 × {𝐴}))))
80 sseqin2 3960 . . . . . 6 (𝑋𝑆 ↔ (𝑆𝑋) = 𝑋)
8120, 80sylib 208 . . . . 5 (𝜑 → (𝑆𝑋) = 𝑋)
8281mpteq1d 4890 . . . 4 (𝜑 → (𝑥 ∈ (𝑆𝑋) ↦ (𝐴 · (𝐹𝑥))) = (𝑥𝑋 ↦ (𝐴 · (𝐹𝑥))))
83 ffn 6206 . . . . . 6 ((𝑆 × {𝐴}):𝑆⟶{𝐴} → (𝑆 × {𝐴}) Fn 𝑆)
8413, 83syl 17 . . . . 5 (𝜑 → (𝑆 × {𝐴}) Fn 𝑆)
85 ffn 6206 . . . . . 6 (𝐹:𝑋⟶ℂ → 𝐹 Fn 𝑋)
867, 85syl 17 . . . . 5 (𝜑𝐹 Fn 𝑋)
871, 20ssexd 4957 . . . . 5 (𝜑𝑋 ∈ V)
88 eqid 2760 . . . . 5 (𝑆𝑋) = (𝑆𝑋)
89 fvconst2g 6632 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((𝑆 × {𝐴})‘𝑥) = 𝐴)
902, 89sylan 489 . . . . 5 ((𝜑𝑥𝑆) → ((𝑆 × {𝐴})‘𝑥) = 𝐴)
91 eqidd 2761 . . . . 5 ((𝜑𝑥𝑋) → (𝐹𝑥) = (𝐹𝑥))
9284, 86, 1, 87, 88, 90, 91offval 7070 . . . 4 (𝜑 → ((𝑆 × {𝐴}) ∘𝑓 · 𝐹) = (𝑥 ∈ (𝑆𝑋) ↦ (𝐴 · (𝐹𝑥))))
93 ffn 6206 . . . . . 6 ((𝑋 × {𝐴}):𝑋⟶{𝐴} → (𝑋 × {𝐴}) Fn 𝑋)
944, 93syl 17 . . . . 5 (𝜑 → (𝑋 × {𝐴}) Fn 𝑋)
95 inidm 3965 . . . . 5 (𝑋𝑋) = 𝑋
96 fvconst2g 6632 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥𝑋) → ((𝑋 × {𝐴})‘𝑥) = 𝐴)
972, 96sylan 489 . . . . 5 ((𝜑𝑥𝑋) → ((𝑋 × {𝐴})‘𝑥) = 𝐴)
9894, 86, 87, 87, 95, 97, 91offval 7070 . . . 4 (𝜑 → ((𝑋 × {𝐴}) ∘𝑓 · 𝐹) = (𝑥𝑋 ↦ (𝐴 · (𝐹𝑥))))
9982, 92, 983eqtr4d 2804 . . 3 (𝜑 → ((𝑆 × {𝐴}) ∘𝑓 · 𝐹) = ((𝑋 × {𝐴}) ∘𝑓 · 𝐹))
10099oveq2d 6830 . 2 (𝜑 → (𝑆 D ((𝑆 × {𝐴}) ∘𝑓 · 𝐹)) = (𝑆 D ((𝑋 × {𝐴}) ∘𝑓 · 𝐹)))
10181mpteq1d 4890 . . 3 (𝜑 → (𝑥 ∈ (𝑆𝑋) ↦ (𝐴 · ((𝑆 D 𝐹)‘𝑥))) = (𝑥𝑋 ↦ (𝐴 · ((𝑆 D 𝐹)‘𝑥))))
102 dvfg 23889 . . . . . . 7 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
1031, 102syl 17 . . . . . 6 (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
10417feq2d 6192 . . . . . 6 (𝜑 → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ (𝑆 D 𝐹):𝑋⟶ℂ))
105103, 104mpbid 222 . . . . 5 (𝜑 → (𝑆 D 𝐹):𝑋⟶ℂ)
106 ffn 6206 . . . . 5 ((𝑆 D 𝐹):𝑋⟶ℂ → (𝑆 D 𝐹) Fn 𝑋)
107105, 106syl 17 . . . 4 (𝜑 → (𝑆 D 𝐹) Fn 𝑋)
108 eqidd 2761 . . . 4 ((𝜑𝑥𝑋) → ((𝑆 D 𝐹)‘𝑥) = ((𝑆 D 𝐹)‘𝑥))
10984, 107, 1, 87, 88, 90, 108offval 7070 . . 3 (𝜑 → ((𝑆 × {𝐴}) ∘𝑓 · (𝑆 D 𝐹)) = (𝑥 ∈ (𝑆𝑋) ↦ (𝐴 · ((𝑆 D 𝐹)‘𝑥))))
110 0cnd 10245 . . . . 5 ((𝜑𝑥𝑋) → 0 ∈ ℂ)
111 ovexd 6844 . . . . 5 ((𝜑𝑥𝑋) → (((𝑆 D 𝐹)‘𝑥) · 𝐴) ∈ V)
11274oveq1d 6829 . . . . . . 7 (𝜑 → ((𝑆 D (𝑋 × {𝐴})) ∘𝑓 · 𝐹) = ((𝑋 × {0}) ∘𝑓 · 𝐹))
113 0cnd 10245 . . . . . . . 8 (𝜑 → 0 ∈ ℂ)
114 mul02 10426 . . . . . . . . 9 (𝑥 ∈ ℂ → (0 · 𝑥) = 0)
115114adantl 473 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → (0 · 𝑥) = 0)
11687, 7, 113, 113, 115caofid2 7094 . . . . . . 7 (𝜑 → ((𝑋 × {0}) ∘𝑓 · 𝐹) = (𝑋 × {0}))
117112, 116eqtrd 2794 . . . . . 6 (𝜑 → ((𝑆 D (𝑋 × {𝐴})) ∘𝑓 · 𝐹) = (𝑋 × {0}))
118117, 71syl6eq 2810 . . . . 5 (𝜑 → ((𝑆 D (𝑋 × {𝐴})) ∘𝑓 · 𝐹) = (𝑥𝑋 ↦ 0))
119 fvexd 6365 . . . . . 6 ((𝜑𝑥𝑋) → ((𝑆 D 𝐹)‘𝑥) ∈ V)
1202adantr 472 . . . . . 6 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
121105feqmptd 6412 . . . . . 6 (𝜑 → (𝑆 D 𝐹) = (𝑥𝑋 ↦ ((𝑆 D 𝐹)‘𝑥)))
12228a1i 11 . . . . . 6 (𝜑 → (𝑋 × {𝐴}) = (𝑥𝑋𝐴))
12387, 119, 120, 121, 122offval2 7080 . . . . 5 (𝜑 → ((𝑆 D 𝐹) ∘𝑓 · (𝑋 × {𝐴})) = (𝑥𝑋 ↦ (((𝑆 D 𝐹)‘𝑥) · 𝐴)))
12487, 110, 111, 118, 123offval2 7080 . . . 4 (𝜑 → (((𝑆 D (𝑋 × {𝐴})) ∘𝑓 · 𝐹) ∘𝑓 + ((𝑆 D 𝐹) ∘𝑓 · (𝑋 × {𝐴}))) = (𝑥𝑋 ↦ (0 + (((𝑆 D 𝐹)‘𝑥) · 𝐴))))
125105ffvelrnda 6523 . . . . . . . 8 ((𝜑𝑥𝑋) → ((𝑆 D 𝐹)‘𝑥) ∈ ℂ)
126125, 120mulcld 10272 . . . . . . 7 ((𝜑𝑥𝑋) → (((𝑆 D 𝐹)‘𝑥) · 𝐴) ∈ ℂ)
127126addid2d 10449 . . . . . 6 ((𝜑𝑥𝑋) → (0 + (((𝑆 D 𝐹)‘𝑥) · 𝐴)) = (((𝑆 D 𝐹)‘𝑥) · 𝐴))
128125, 120mulcomd 10273 . . . . . 6 ((𝜑𝑥𝑋) → (((𝑆 D 𝐹)‘𝑥) · 𝐴) = (𝐴 · ((𝑆 D 𝐹)‘𝑥)))
129127, 128eqtrd 2794 . . . . 5 ((𝜑𝑥𝑋) → (0 + (((𝑆 D 𝐹)‘𝑥) · 𝐴)) = (𝐴 · ((𝑆 D 𝐹)‘𝑥)))
130129mpteq2dva 4896 . . . 4 (𝜑 → (𝑥𝑋 ↦ (0 + (((𝑆 D 𝐹)‘𝑥) · 𝐴))) = (𝑥𝑋 ↦ (𝐴 · ((𝑆 D 𝐹)‘𝑥))))
131124, 130eqtrd 2794 . . 3 (𝜑 → (((𝑆 D (𝑋 × {𝐴})) ∘𝑓 · 𝐹) ∘𝑓 + ((𝑆 D 𝐹) ∘𝑓 · (𝑋 × {𝐴}))) = (𝑥𝑋 ↦ (𝐴 · ((𝑆 D 𝐹)‘𝑥))))
132101, 109, 1313eqtr4d 2804 . 2 (𝜑 → ((𝑆 × {𝐴}) ∘𝑓 · (𝑆 D 𝐹)) = (((𝑆 D (𝑋 × {𝐴})) ∘𝑓 · 𝐹) ∘𝑓 + ((𝑆 D 𝐹) ∘𝑓 · (𝑋 × {𝐴}))))
13379, 100, 1323eqtr4d 2804 1 (𝜑 → (𝑆 D ((𝑆 × {𝐴}) ∘𝑓 · 𝐹)) = ((𝑆 × {𝐴}) ∘𝑓 · (𝑆 D 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  Vcvv 3340  cin 3714  wss 3715  {csn 4321  {cpr 4323   cuni 4588  cmpt 4881   × cxp 5264  dom cdm 5266  cres 5268   Fn wfn 6044  wf 6045  cfv 6049  (class class class)co 6814  𝑓 cof 7061  cc 10146  cr 10147  0cc0 10148   + caddc 10151   · cmul 10153  t crest 16303  TopOpenctopn 16304  fldccnfld 19968  Topctop 20920  TopOnctopon 20937  intcnt 21043   D cdv 23846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226  ax-addf 10227  ax-mulf 10228
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-of 7063  df-om 7232  df-1st 7334  df-2nd 7335  df-supp 7465  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-oadd 7734  df-er 7913  df-map 8027  df-pm 8028  df-ixp 8077  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-fsupp 8443  df-fi 8484  df-sup 8515  df-inf 8516  df-oi 8582  df-card 8975  df-cda 9202  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-q 12002  df-rp 12046  df-xneg 12159  df-xadd 12160  df-xmul 12161  df-icc 12395  df-fz 12540  df-fzo 12680  df-seq 13016  df-exp 13075  df-hash 13332  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-starv 16178  df-sca 16179  df-vsca 16180  df-ip 16181  df-tset 16182  df-ple 16183  df-ds 16186  df-unif 16187  df-hom 16188  df-cco 16189  df-rest 16305  df-topn 16306  df-0g 16324  df-gsum 16325  df-topgen 16326  df-pt 16327  df-prds 16330  df-xrs 16384  df-qtop 16389  df-imas 16390  df-xps 16392  df-mre 16468  df-mrc 16469  df-acs 16471  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-submnd 17557  df-mulg 17762  df-cntz 17970  df-cmn 18415  df-psmet 19960  df-xmet 19961  df-met 19962  df-bl 19963  df-mopn 19964  df-fbas 19965  df-fg 19966  df-cnfld 19969  df-top 20921  df-topon 20938  df-topsp 20959  df-bases 20972  df-cld 21045  df-ntr 21046  df-cls 21047  df-nei 21124  df-lp 21162  df-perf 21163  df-cn 21253  df-cnp 21254  df-haus 21341  df-tx 21587  df-hmeo 21780  df-fil 21871  df-fm 21963  df-flim 21964  df-flf 21965  df-xms 22346  df-ms 22347  df-tms 22348  df-cncf 22902  df-limc 23849  df-dv 23850
This theorem is referenced by:  dvsinax  40648
  Copyright terms: Public domain W3C validator