| Step | Hyp | Ref
| Expression |
| 1 | | axext.1 |
. . . . . 6
⊢ A:(α
→ ∗) |
| 2 | | wv 64 |
. . . . . 6
⊢ x:α:α |
| 3 | 1, 2 | wc 50 |
. . . . 5
⊢ (Ax:α):∗ |
| 4 | 3 | wl 66 |
. . . 4
⊢
λx:α (Ax:α):(α → ∗) |
| 5 | | axext.2 |
. . . . . . . 8
⊢ B:(α
→ ∗) |
| 6 | 5, 2 | wc 50 |
. . . . . . 7
⊢ (Bx:α):∗ |
| 7 | 3, 6 | weqi 76 |
. . . . . 6
⊢ [(Ax:α) = (Bx:α)]:∗ |
| 8 | 7 | ax4 150 |
. . . . 5
⊢ (∀λx:α
[(Ax:α) =
(Bx:α)])⊧[(Ax:α) = (Bx:α)] |
| 9 | | wal 134 |
. . . . . 6
⊢ ∀:((α
→ ∗) → ∗) |
| 10 | 7 | wl 66 |
. . . . . 6
⊢
λx:α [(Ax:α) = (Bx:α)]:(α → ∗) |
| 11 | | wv 64 |
. . . . . 6
⊢ y:α:α |
| 12 | 9, 11 | ax-17 105 |
. . . . . 6
⊢
⊤⊧[(λx:α ∀y:α) = ∀] |
| 13 | 7, 11 | ax-hbl1 103 |
. . . . . 6
⊢
⊤⊧[(λx:α
λx:α [(Ax:α) = (Bx:α)]y:α) =
λx:α [(Ax:α) = (Bx:α)]] |
| 14 | 9, 10, 11, 12, 13 | hbc 110 |
. . . . 5
⊢
⊤⊧[(λx:α (∀λx:α
[(Ax:α) =
(Bx:α)])y:α) =
(∀λx:α
[(Ax:α) =
(Bx:α)])] |
| 15 | 3, 8, 14 | leqf 181 |
. . . 4
⊢ (∀λx:α
[(Ax:α) =
(Bx:α)])⊧[λx:α
(Ax:α) =
λx:α (Bx:α)] |
| 16 | 15 | ax-cb1 29 |
. . . . 5
⊢ (∀λx:α
[(Ax:α) =
(Bx:α)]):∗ |
| 17 | 1 | eta 178 |
. . . . 5
⊢
⊤⊧[λx:α
(Ax:α) =
A] |
| 18 | 16, 17 | a1i 28 |
. . . 4
⊢ (∀λx:α
[(Ax:α) =
(Bx:α)])⊧[λx:α
(Ax:α) =
A] |
| 19 | 5 | eta 178 |
. . . . 5
⊢
⊤⊧[λx:α
(Bx:α) =
B] |
| 20 | 16, 19 | a1i 28 |
. . . 4
⊢ (∀λx:α
[(Ax:α) =
(Bx:α)])⊧[λx:α
(Bx:α) =
B] |
| 21 | 4, 15, 18, 20 | 3eqtr3i 97 |
. . 3
⊢ (∀λx:α
[(Ax:α) =
(Bx:α)])⊧[A = B] |
| 22 | | wtru 43 |
. . 3
⊢
⊤:∗ |
| 23 | 21, 22 | adantl 56 |
. 2
⊢ (⊤, (∀λx:α
[(Ax:α) =
(Bx:α)]))⊧[A = B] |
| 24 | 23 | ex 158 |
1
⊢
⊤⊧[(∀λx:α
[(Ax:α) =
(Bx:α)])
⇒ [A = B]] |