HOLE Home Higher-Order Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HOLE Home  >  Th. List  >  axext GIF version

Theorem axext 219
Description: Axiom of Extensionality. An axiom of Zermelo-Fraenkel set theory. It states that two sets are identical if they contain the same elements. Axiom Ext of [BellMachover] p. 461. (Contributed by Mario Carneiro, 10-Oct-2014.)
Hypotheses
Ref Expression
axext.1 A:(α → ∗)
axext.2 B:(α → ∗)
Assertion
Ref Expression
axext ⊤⊧[(λx:α [(Ax:α) = (Bx:α)]) ⇒ [A = B]]
Distinct variable groups:   x,A   x,B   α,x

Proof of Theorem axext
Dummy variable y is distinct from all other variables.
StepHypRef Expression
1 axext.1 . . . . . 6 A:(α → ∗)
2 wv 64 . . . . . 6 x:α:α
31, 2wc 50 . . . . 5 (Ax:α):∗
43wl 66 . . . 4 λx:α (Ax:α):(α → ∗)
5 axext.2 . . . . . . . 8 B:(α → ∗)
65, 2wc 50 . . . . . . 7 (Bx:α):∗
73, 6weqi 76 . . . . . 6 [(Ax:α) = (Bx:α)]:∗
87ax4 150 . . . . 5 (λx:α [(Ax:α) = (Bx:α)])⊧[(Ax:α) = (Bx:α)]
9 wal 134 . . . . . 6 :((α → ∗) → ∗)
107wl 66 . . . . . 6 λx:α [(Ax:α) = (Bx:α)]:(α → ∗)
11 wv 64 . . . . . 6 y:α:α
129, 11ax-17 105 . . . . . 6 ⊤⊧[(λx:α y:α) = ]
137, 11ax-hbl1 103 . . . . . 6 ⊤⊧[(λx:α λx:α [(Ax:α) = (Bx:α)]y:α) = λx:α [(Ax:α) = (Bx:α)]]
149, 10, 11, 12, 13hbc 110 . . . . 5 ⊤⊧[(λx:α (λx:α [(Ax:α) = (Bx:α)])y:α) = (λx:α [(Ax:α) = (Bx:α)])]
153, 8, 14leqf 181 . . . 4 (λx:α [(Ax:α) = (Bx:α)])⊧[λx:α (Ax:α) = λx:α (Bx:α)]
1615ax-cb1 29 . . . . 5 (λx:α [(Ax:α) = (Bx:α)]):∗
171eta 178 . . . . 5 ⊤⊧[λx:α (Ax:α) = A]
1816, 17a1i 28 . . . 4 (λx:α [(Ax:α) = (Bx:α)])⊧[λx:α (Ax:α) = A]
195eta 178 . . . . 5 ⊤⊧[λx:α (Bx:α) = B]
2016, 19a1i 28 . . . 4 (λx:α [(Ax:α) = (Bx:α)])⊧[λx:α (Bx:α) = B]
214, 15, 18, 203eqtr3i 97 . . 3 (λx:α [(Ax:α) = (Bx:α)])⊧[A = B]
22 wtru 43 . . 3 ⊤:∗
2321, 22adantl 56 . 2 (⊤, (λx:α [(Ax:α) = (Bx:α)]))⊧[A = B]
2423ex 158 1 ⊤⊧[(λx:α [(Ax:α) = (Bx:α)]) ⇒ [A = B]]
Colors of variables: type var term
Syntax hints:  tv 1  ht 2  hb 3  kc 5  λkl 6   = ke 7  kt 8  [kbr 9  wffMMJ2 11  wffMMJ2t 12  tim 121  tal 122
This theorem was proved from axioms:  ax-syl 15  ax-jca 17  ax-simpl 20  ax-simpr 21  ax-id 24  ax-trud 26  ax-cb1 29  ax-cb2 30  ax-wctl 31  ax-wctr 32  ax-weq 40  ax-refl 42  ax-eqmp 45  ax-ded 46  ax-wct 47  ax-wc 49  ax-ceq 51  ax-wv 63  ax-wl 65  ax-beta 67  ax-distrc 68  ax-leq 69  ax-distrl 70  ax-wov 71  ax-eqtypi 77  ax-eqtypri 80  ax-hbl1 103  ax-17 105  ax-inst 113  ax-eta 177
This theorem depends on definitions:  df-ov 73  df-al 126  df-an 128  df-im 129
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator