Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > notnot | GIF version |
Description: Rule of double negation. (Contributed by Mario Carneiro, 10-Oct-2014.) |
Ref | Expression |
---|---|
exmid.1 | ⊢ A:∗ |
Ref | Expression |
---|---|
notnot | ⊢ ⊤⊧[A = (¬ (¬ A))] |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmid.1 | . . 3 ⊢ A:∗ | |
2 | 1 | notnot1 160 | . 2 ⊢ A⊧(¬ (¬ A)) |
3 | wnot 138 | . . . 4 ⊢ ¬ :(∗ → ∗) | |
4 | 3, 1 | wc 50 | . . 3 ⊢ (¬ A):∗ |
5 | 2 | ax-cb2 30 | . . . 4 ⊢ (¬ (¬ A)):∗ |
6 | 1 | exmid 199 | . . . 4 ⊢ ⊤⊧[A ∨ (¬ A)] |
7 | 5, 6 | a1i 28 | . . 3 ⊢ (¬ (¬ A))⊧[A ∨ (¬ A)] |
8 | 5, 1 | simpr 23 | . . 3 ⊢ ((¬ (¬ A)), A)⊧A |
9 | wfal 135 | . . . . 5 ⊢ ⊥:∗ | |
10 | 5 | id 25 | . . . . . 6 ⊢ (¬ (¬ A))⊧(¬ (¬ A)) |
11 | 4 | notval 145 | . . . . . . 7 ⊢ ⊤⊧[(¬ (¬ A)) = [(¬ A) ⇒ ⊥]] |
12 | 5, 11 | a1i 28 | . . . . . 6 ⊢ (¬ (¬ A))⊧[(¬ (¬ A)) = [(¬ A) ⇒ ⊥]] |
13 | 10, 12 | mpbi 82 | . . . . 5 ⊢ (¬ (¬ A))⊧[(¬ A) ⇒ ⊥] |
14 | 4, 9, 13 | imp 157 | . . . 4 ⊢ ((¬ (¬ A)), (¬ A))⊧⊥ |
15 | 1 | pm2.21 153 | . . . 4 ⊢ ⊥⊧A |
16 | 14, 15 | syl 16 | . . 3 ⊢ ((¬ (¬ A)), (¬ A))⊧A |
17 | 1, 4, 1, 7, 8, 16 | ecase 163 | . 2 ⊢ (¬ (¬ A))⊧A |
18 | 2, 17 | dedi 85 | 1 ⊢ ⊤⊧[A = (¬ (¬ A))] |
Colors of variables: type var term |
Syntax hints: ∗hb 3 kc 5 = ke 7 ⊤kt 8 [kbr 9 kct 10 ⊧wffMMJ2 11 wffMMJ2t 12 ⊥tfal 118 ¬ tne 120 ⇒ tim 121 ∨ tor 124 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-ded 46 ax-wct 47 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-distrl 70 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 ax-wat 192 ax-ac 196 |
This theorem depends on definitions: df-ov 73 df-al 126 df-fal 127 df-an 128 df-im 129 df-not 130 df-or 132 |
This theorem is referenced by: exnal 201 |
Copyright terms: Public domain | W3C validator |