Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > imp | GIF version |
Description: Importation deduction. (Contributed by Mario Carneiro, 9-Oct-2014.) |
Ref | Expression |
---|---|
imp.1 | ⊢ S:∗ |
imp.2 | ⊢ T:∗ |
imp.3 | ⊢ R⊧[S ⇒ T] |
Ref | Expression |
---|---|
imp | ⊢ (R, S)⊧T |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp.2 | . 2 ⊢ T:∗ | |
2 | imp.3 | . . . 4 ⊢ R⊧[S ⇒ T] | |
3 | 2 | ax-cb1 29 | . . 3 ⊢ R:∗ |
4 | imp.1 | . . 3 ⊢ S:∗ | |
5 | 3, 4 | simpr 23 | . 2 ⊢ (R, S)⊧S |
6 | 2, 4 | adantr 55 | . 2 ⊢ (R, S)⊧[S ⇒ T] |
7 | 1, 5, 6 | mpd 156 | 1 ⊢ (R, S)⊧T |
Colors of variables: type var term |
Syntax hints: ∗hb 3 [kbr 9 kct 10 ⊧wffMMJ2 11 wffMMJ2t 12 ⇒ tim 121 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-ded 46 ax-wct 47 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-distrl 70 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 |
This theorem depends on definitions: df-ov 73 df-an 128 df-im 129 |
This theorem is referenced by: con2d 161 exlimdv 167 alnex 186 notnot 200 ax3 205 |
Copyright terms: Public domain | W3C validator |