ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funimaexglem Unicode version

Theorem funimaexglem 5271
Description: Lemma for funimaexg 5272. It constitutes the interesting part of funimaexg 5272, in which  B 
C_  dom  A. (Contributed by Jim Kingdon, 27-Dec-2018.)
Assertion
Ref Expression
funimaexglem  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  ( A " B )  e. 
_V )

Proof of Theorem funimaexglem
Dummy variables  b  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dffun7 5215 . . . . . . . . . 10  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x  e.  dom  A E* y  x A y ) )
21simprbi 273 . . . . . . . . 9  |-  ( Fun 
A  ->  A. x  e.  dom  A E* y  x A y )
323ad2ant1 1008 . . . . . . . 8  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  A. x  e.  dom  A E* y  x A y )
4 ssralv 3206 . . . . . . . . 9  |-  ( B 
C_  dom  A  ->  ( A. x  e.  dom  A E* y  x A y  ->  A. x  e.  B  E* y  x A y ) )
543ad2ant3 1010 . . . . . . . 8  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  ( A. x  e.  dom  A E* y  x A y  ->  A. x  e.  B  E* y  x A y ) )
63, 5mpd 13 . . . . . . 7  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  A. x  e.  B  E* y  x A y )
76alrimiv 1862 . . . . . 6  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  A. z A. x  e.  B  E* y  x A
y )
8 sseq1 3165 . . . . . . . . . . . . . . . . 17  |-  ( b  =  B  ->  (
b  C_  dom  A  <->  B  C_  dom  A ) )
98biimpar 295 . . . . . . . . . . . . . . . 16  |-  ( ( b  =  B  /\  B  C_  dom  A )  ->  b  C_  dom  A )
1093adant1 1005 . . . . . . . . . . . . . . 15  |-  ( ( Fun  A  /\  b  =  B  /\  B  C_  dom  A )  ->  b  C_ 
dom  A )
11 simp1 987 . . . . . . . . . . . . . . 15  |-  ( ( Fun  A  /\  b  =  B  /\  B  C_  dom  A )  ->  Fun  A )
1210, 11jca 304 . . . . . . . . . . . . . 14  |-  ( ( Fun  A  /\  b  =  B  /\  B  C_  dom  A )  ->  (
b  C_  dom  A  /\  Fun  A ) )
13 dffun8 5216 . . . . . . . . . . . . . . . . . 18  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x  e.  dom  A E! y  x A y ) )
1413simprbi 273 . . . . . . . . . . . . . . . . 17  |-  ( Fun 
A  ->  A. x  e.  dom  A E! y  x A y )
1514adantl 275 . . . . . . . . . . . . . . . 16  |-  ( ( b  C_  dom  A  /\  Fun  A )  ->  A. x  e.  dom  A E! y  x A y )
16 ssel 3136 . . . . . . . . . . . . . . . . 17  |-  ( b 
C_  dom  A  ->  ( x  e.  b  ->  x  e.  dom  A ) )
1716adantr 274 . . . . . . . . . . . . . . . 16  |-  ( ( b  C_  dom  A  /\  Fun  A )  ->  (
x  e.  b  ->  x  e.  dom  A ) )
18 rsp 2513 . . . . . . . . . . . . . . . 16  |-  ( A. x  e.  dom  A E! y  x A y  ->  ( x  e. 
dom  A  ->  E! y  x A y ) )
1915, 17, 18sylsyld 58 . . . . . . . . . . . . . . 15  |-  ( ( b  C_  dom  A  /\  Fun  A )  ->  (
x  e.  b  ->  E! y  x A
y ) )
2019ralrimiv 2538 . . . . . . . . . . . . . 14  |-  ( ( b  C_  dom  A  /\  Fun  A )  ->  A. x  e.  b  E! y  x A y )
21 zfrep6 4099 . . . . . . . . . . . . . 14  |-  ( A. x  e.  b  E! y  x A y  ->  E. z A. x  e.  b  E. y  e.  z  x A y )
2212, 20, 213syl 17 . . . . . . . . . . . . 13  |-  ( ( Fun  A  /\  b  =  B  /\  B  C_  dom  A )  ->  E. z A. x  e.  b  E. y  e.  z  x A y )
23 raleq 2661 . . . . . . . . . . . . . . 15  |-  ( b  =  B  ->  ( A. x  e.  b  E. y  e.  z  x A y  <->  A. x  e.  B  E. y  e.  z  x A
y ) )
2423exbidv 1813 . . . . . . . . . . . . . 14  |-  ( b  =  B  ->  ( E. z A. x  e.  b  E. y  e.  z  x A y  <->  E. z A. x  e.  B  E. y  e.  z  x A y ) )
25243ad2ant2 1009 . . . . . . . . . . . . 13  |-  ( ( Fun  A  /\  b  =  B  /\  B  C_  dom  A )  ->  ( E. z A. x  e.  b  E. y  e.  z  x A y  <->  E. z A. x  e.  B  E. y  e.  z  x A y ) )
2622, 25mpbid 146 . . . . . . . . . . . 12  |-  ( ( Fun  A  /\  b  =  B  /\  B  C_  dom  A )  ->  E. z A. x  e.  B  E. y  e.  z  x A y )
27263com12 1197 . . . . . . . . . . 11  |-  ( ( b  =  B  /\  Fun  A  /\  B  C_  dom  A )  ->  E. z A. x  e.  B  E. y  e.  z  x A y )
28273expib 1196 . . . . . . . . . 10  |-  ( b  =  B  ->  (
( Fun  A  /\  B  C_  dom  A )  ->  E. z A. x  e.  B  E. y  e.  z  x A
y ) )
2928vtocleg 2797 . . . . . . . . 9  |-  ( B  e.  C  ->  (
( Fun  A  /\  B  C_  dom  A )  ->  E. z A. x  e.  B  E. y  e.  z  x A
y ) )
30293impib 1191 . . . . . . . 8  |-  ( ( B  e.  C  /\  Fun  A  /\  B  C_  dom  A )  ->  E. z A. x  e.  B  E. y  e.  z  x A y )
31303com12 1197 . . . . . . 7  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  E. z A. x  e.  B  E. y  e.  z  x A y )
32 df-rex 2450 . . . . . . . . . 10  |-  ( E. y  e.  z  x A y  <->  E. y
( y  e.  z  /\  x A y ) )
33 exancom 1596 . . . . . . . . . 10  |-  ( E. y ( y  e.  z  /\  x A y )  <->  E. y
( x A y  /\  y  e.  z ) )
3432, 33bitri 183 . . . . . . . . 9  |-  ( E. y  e.  z  x A y  <->  E. y
( x A y  /\  y  e.  z ) )
3534ralbii 2472 . . . . . . . 8  |-  ( A. x  e.  B  E. y  e.  z  x A y  <->  A. x  e.  B  E. y
( x A y  /\  y  e.  z ) )
3635exbii 1593 . . . . . . 7  |-  ( E. z A. x  e.  B  E. y  e.  z  x A y  <->  E. z A. x  e.  B  E. y ( x A y  /\  y  e.  z )
)
3731, 36sylib 121 . . . . . 6  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  E. z A. x  e.  B  E. y ( x A y  /\  y  e.  z ) )
38 19.29 1608 . . . . . . 7  |-  ( ( A. z A. x  e.  B  E* y  x A y  /\  E. z A. x  e.  B  E. y ( x A y  /\  y  e.  z ) )  ->  E. z ( A. x  e.  B  E* y  x A y  /\  A. x  e.  B  E. y ( x A y  /\  y  e.  z ) ) )
39 nfcv 2308 . . . . . . . . . . 11  |-  F/_ y B
40 nfmo1 2026 . . . . . . . . . . 11  |-  F/ y E* y  x A y
4139, 40nfralxy 2504 . . . . . . . . . 10  |-  F/ y A. x  e.  B  E* y  x A
y
42 nfe1 1484 . . . . . . . . . . 11  |-  F/ y E. y ( x A y  /\  y  e.  z )
4339, 42nfralxy 2504 . . . . . . . . . 10  |-  F/ y A. x  e.  B  E. y ( x A y  /\  y  e.  z )
4441, 43nfan 1553 . . . . . . . . 9  |-  F/ y ( A. x  e.  B  E* y  x A y  /\  A. x  e.  B  E. y ( x A y  /\  y  e.  z ) )
45 r19.26 2592 . . . . . . . . . 10  |-  ( A. x  e.  B  ( E* y  x A
y  /\  E. y
( x A y  /\  y  e.  z ) )  <->  ( A. x  e.  B  E* y  x A y  /\  A. x  e.  B  E. y ( x A y  /\  y  e.  z ) ) )
46 mopick 2092 . . . . . . . . . . 11  |-  ( ( E* y  x A y  /\  E. y
( x A y  /\  y  e.  z ) )  ->  (
x A y  -> 
y  e.  z ) )
4746ralimi 2529 . . . . . . . . . 10  |-  ( A. x  e.  B  ( E* y  x A
y  /\  E. y
( x A y  /\  y  e.  z ) )  ->  A. x  e.  B  ( x A y  ->  y  e.  z ) )
4845, 47sylbir 134 . . . . . . . . 9  |-  ( ( A. x  e.  B  E* y  x A
y  /\  A. x  e.  B  E. y
( x A y  /\  y  e.  z ) )  ->  A. x  e.  B  ( x A y  ->  y  e.  z ) )
4944, 48alrimi 1510 . . . . . . . 8  |-  ( ( A. x  e.  B  E* y  x A
y  /\  A. x  e.  B  E. y
( x A y  /\  y  e.  z ) )  ->  A. y A. x  e.  B  ( x A y  ->  y  e.  z ) )
5049eximi 1588 . . . . . . 7  |-  ( E. z ( A. x  e.  B  E* y  x A y  /\  A. x  e.  B  E. y ( x A y  /\  y  e.  z ) )  ->  E. z A. y A. x  e.  B  (
x A y  -> 
y  e.  z ) )
5138, 50syl 14 . . . . . 6  |-  ( ( A. z A. x  e.  B  E* y  x A y  /\  E. z A. x  e.  B  E. y ( x A y  /\  y  e.  z ) )  ->  E. z A. y A. x  e.  B  (
x A y  -> 
y  e.  z ) )
527, 37, 51syl2anc 409 . . . . 5  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  E. z A. y A. x  e.  B  ( x A y  ->  y  e.  z ) )
53 r19.23v 2575 . . . . . . 7  |-  ( A. x  e.  B  (
x A y  -> 
y  e.  z )  <-> 
( E. x  e.  B  x A y  ->  y  e.  z ) )
5453albii 1458 . . . . . 6  |-  ( A. y A. x  e.  B  ( x A y  ->  y  e.  z )  <->  A. y ( E. x  e.  B  x A y  ->  y  e.  z ) )
5554exbii 1593 . . . . 5  |-  ( E. z A. y A. x  e.  B  (
x A y  -> 
y  e.  z )  <->  E. z A. y ( E. x  e.  B  x A y  ->  y  e.  z ) )
5652, 55sylib 121 . . . 4  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  E. z A. y ( E. x  e.  B  x A
y  ->  y  e.  z ) )
57 abss 3211 . . . . 5  |-  ( { y  |  E. x  e.  B  x A
y }  C_  z  <->  A. y ( E. x  e.  B  x A
y  ->  y  e.  z ) )
5857exbii 1593 . . . 4  |-  ( E. z { y  |  E. x  e.  B  x A y }  C_  z 
<->  E. z A. y
( E. x  e.  B  x A y  ->  y  e.  z ) )
5956, 58sylibr 133 . . 3  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  E. z { y  |  E. x  e.  B  x A y }  C_  z )
60 dfima2 4948 . . . . 5  |-  ( A
" B )  =  { y  |  E. x  e.  B  x A y }
6160sseq1i 3168 . . . 4  |-  ( ( A " B ) 
C_  z  <->  { y  |  E. x  e.  B  x A y }  C_  z )
6261exbii 1593 . . 3  |-  ( E. z ( A " B )  C_  z  <->  E. z { y  |  E. x  e.  B  x A y }  C_  z )
6359, 62sylibr 133 . 2  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  E. z
( A " B
)  C_  z )
64 vex 2729 . . . 4  |-  z  e. 
_V
6564ssex 4119 . . 3  |-  ( ( A " B ) 
C_  z  ->  ( A " B )  e. 
_V )
6665exlimiv 1586 . 2  |-  ( E. z ( A " B )  C_  z  ->  ( A " B
)  e.  _V )
6763, 66syl 14 1  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  ( A " B )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968   A.wal 1341    = wceq 1343   E.wex 1480   E!weu 2014   E*wmo 2015    e. wcel 2136   {cab 2151   A.wral 2444   E.wrex 2445   _Vcvv 2726    C_ wss 3116   class class class wbr 3982   dom cdm 4604   "cima 4607   Rel wrel 4609   Fun wfun 5182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-fun 5190
This theorem is referenced by:  funimaexg  5272
  Copyright terms: Public domain W3C validator