ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funimaexglem Unicode version

Theorem funimaexglem 5295
Description: Lemma for funimaexg 5296. It constitutes the interesting part of funimaexg 5296, in which  B 
C_  dom  A. (Contributed by Jim Kingdon, 27-Dec-2018.)
Assertion
Ref Expression
funimaexglem  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  ( A " B )  e. 
_V )

Proof of Theorem funimaexglem
Dummy variables  b  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dffun7 5239 . . . . . . . . . 10  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x  e.  dom  A E* y  x A y ) )
21simprbi 275 . . . . . . . . 9  |-  ( Fun 
A  ->  A. x  e.  dom  A E* y  x A y )
323ad2ant1 1018 . . . . . . . 8  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  A. x  e.  dom  A E* y  x A y )
4 ssralv 3219 . . . . . . . . 9  |-  ( B 
C_  dom  A  ->  ( A. x  e.  dom  A E* y  x A y  ->  A. x  e.  B  E* y  x A y ) )
543ad2ant3 1020 . . . . . . . 8  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  ( A. x  e.  dom  A E* y  x A y  ->  A. x  e.  B  E* y  x A y ) )
63, 5mpd 13 . . . . . . 7  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  A. x  e.  B  E* y  x A y )
76alrimiv 1874 . . . . . 6  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  A. z A. x  e.  B  E* y  x A
y )
8 sseq1 3178 . . . . . . . . . . . . . . . . 17  |-  ( b  =  B  ->  (
b  C_  dom  A  <->  B  C_  dom  A ) )
98biimpar 297 . . . . . . . . . . . . . . . 16  |-  ( ( b  =  B  /\  B  C_  dom  A )  ->  b  C_  dom  A )
1093adant1 1015 . . . . . . . . . . . . . . 15  |-  ( ( Fun  A  /\  b  =  B  /\  B  C_  dom  A )  ->  b  C_ 
dom  A )
11 simp1 997 . . . . . . . . . . . . . . 15  |-  ( ( Fun  A  /\  b  =  B  /\  B  C_  dom  A )  ->  Fun  A )
1210, 11jca 306 . . . . . . . . . . . . . 14  |-  ( ( Fun  A  /\  b  =  B  /\  B  C_  dom  A )  ->  (
b  C_  dom  A  /\  Fun  A ) )
13 dffun8 5240 . . . . . . . . . . . . . . . . . 18  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x  e.  dom  A E! y  x A y ) )
1413simprbi 275 . . . . . . . . . . . . . . . . 17  |-  ( Fun 
A  ->  A. x  e.  dom  A E! y  x A y )
1514adantl 277 . . . . . . . . . . . . . . . 16  |-  ( ( b  C_  dom  A  /\  Fun  A )  ->  A. x  e.  dom  A E! y  x A y )
16 ssel 3149 . . . . . . . . . . . . . . . . 17  |-  ( b 
C_  dom  A  ->  ( x  e.  b  ->  x  e.  dom  A ) )
1716adantr 276 . . . . . . . . . . . . . . . 16  |-  ( ( b  C_  dom  A  /\  Fun  A )  ->  (
x  e.  b  ->  x  e.  dom  A ) )
18 rsp 2524 . . . . . . . . . . . . . . . 16  |-  ( A. x  e.  dom  A E! y  x A y  ->  ( x  e. 
dom  A  ->  E! y  x A y ) )
1915, 17, 18sylsyld 58 . . . . . . . . . . . . . . 15  |-  ( ( b  C_  dom  A  /\  Fun  A )  ->  (
x  e.  b  ->  E! y  x A
y ) )
2019ralrimiv 2549 . . . . . . . . . . . . . 14  |-  ( ( b  C_  dom  A  /\  Fun  A )  ->  A. x  e.  b  E! y  x A y )
21 zfrep6 4117 . . . . . . . . . . . . . 14  |-  ( A. x  e.  b  E! y  x A y  ->  E. z A. x  e.  b  E. y  e.  z  x A y )
2212, 20, 213syl 17 . . . . . . . . . . . . 13  |-  ( ( Fun  A  /\  b  =  B  /\  B  C_  dom  A )  ->  E. z A. x  e.  b  E. y  e.  z  x A y )
23 raleq 2672 . . . . . . . . . . . . . . 15  |-  ( b  =  B  ->  ( A. x  e.  b  E. y  e.  z  x A y  <->  A. x  e.  B  E. y  e.  z  x A
y ) )
2423exbidv 1825 . . . . . . . . . . . . . 14  |-  ( b  =  B  ->  ( E. z A. x  e.  b  E. y  e.  z  x A y  <->  E. z A. x  e.  B  E. y  e.  z  x A y ) )
25243ad2ant2 1019 . . . . . . . . . . . . 13  |-  ( ( Fun  A  /\  b  =  B  /\  B  C_  dom  A )  ->  ( E. z A. x  e.  b  E. y  e.  z  x A y  <->  E. z A. x  e.  B  E. y  e.  z  x A y ) )
2622, 25mpbid 147 . . . . . . . . . . . 12  |-  ( ( Fun  A  /\  b  =  B  /\  B  C_  dom  A )  ->  E. z A. x  e.  B  E. y  e.  z  x A y )
27263com12 1207 . . . . . . . . . . 11  |-  ( ( b  =  B  /\  Fun  A  /\  B  C_  dom  A )  ->  E. z A. x  e.  B  E. y  e.  z  x A y )
28273expib 1206 . . . . . . . . . 10  |-  ( b  =  B  ->  (
( Fun  A  /\  B  C_  dom  A )  ->  E. z A. x  e.  B  E. y  e.  z  x A
y ) )
2928vtocleg 2808 . . . . . . . . 9  |-  ( B  e.  C  ->  (
( Fun  A  /\  B  C_  dom  A )  ->  E. z A. x  e.  B  E. y  e.  z  x A
y ) )
30293impib 1201 . . . . . . . 8  |-  ( ( B  e.  C  /\  Fun  A  /\  B  C_  dom  A )  ->  E. z A. x  e.  B  E. y  e.  z  x A y )
31303com12 1207 . . . . . . 7  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  E. z A. x  e.  B  E. y  e.  z  x A y )
32 df-rex 2461 . . . . . . . . . 10  |-  ( E. y  e.  z  x A y  <->  E. y
( y  e.  z  /\  x A y ) )
33 exancom 1608 . . . . . . . . . 10  |-  ( E. y ( y  e.  z  /\  x A y )  <->  E. y
( x A y  /\  y  e.  z ) )
3432, 33bitri 184 . . . . . . . . 9  |-  ( E. y  e.  z  x A y  <->  E. y
( x A y  /\  y  e.  z ) )
3534ralbii 2483 . . . . . . . 8  |-  ( A. x  e.  B  E. y  e.  z  x A y  <->  A. x  e.  B  E. y
( x A y  /\  y  e.  z ) )
3635exbii 1605 . . . . . . 7  |-  ( E. z A. x  e.  B  E. y  e.  z  x A y  <->  E. z A. x  e.  B  E. y ( x A y  /\  y  e.  z )
)
3731, 36sylib 122 . . . . . 6  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  E. z A. x  e.  B  E. y ( x A y  /\  y  e.  z ) )
38 19.29 1620 . . . . . . 7  |-  ( ( A. z A. x  e.  B  E* y  x A y  /\  E. z A. x  e.  B  E. y ( x A y  /\  y  e.  z ) )  ->  E. z ( A. x  e.  B  E* y  x A y  /\  A. x  e.  B  E. y ( x A y  /\  y  e.  z ) ) )
39 nfcv 2319 . . . . . . . . . . 11  |-  F/_ y B
40 nfmo1 2038 . . . . . . . . . . 11  |-  F/ y E* y  x A y
4139, 40nfralxy 2515 . . . . . . . . . 10  |-  F/ y A. x  e.  B  E* y  x A
y
42 nfe1 1496 . . . . . . . . . . 11  |-  F/ y E. y ( x A y  /\  y  e.  z )
4339, 42nfralxy 2515 . . . . . . . . . 10  |-  F/ y A. x  e.  B  E. y ( x A y  /\  y  e.  z )
4441, 43nfan 1565 . . . . . . . . 9  |-  F/ y ( A. x  e.  B  E* y  x A y  /\  A. x  e.  B  E. y ( x A y  /\  y  e.  z ) )
45 r19.26 2603 . . . . . . . . . 10  |-  ( A. x  e.  B  ( E* y  x A
y  /\  E. y
( x A y  /\  y  e.  z ) )  <->  ( A. x  e.  B  E* y  x A y  /\  A. x  e.  B  E. y ( x A y  /\  y  e.  z ) ) )
46 mopick 2104 . . . . . . . . . . 11  |-  ( ( E* y  x A y  /\  E. y
( x A y  /\  y  e.  z ) )  ->  (
x A y  -> 
y  e.  z ) )
4746ralimi 2540 . . . . . . . . . 10  |-  ( A. x  e.  B  ( E* y  x A
y  /\  E. y
( x A y  /\  y  e.  z ) )  ->  A. x  e.  B  ( x A y  ->  y  e.  z ) )
4845, 47sylbir 135 . . . . . . . . 9  |-  ( ( A. x  e.  B  E* y  x A
y  /\  A. x  e.  B  E. y
( x A y  /\  y  e.  z ) )  ->  A. x  e.  B  ( x A y  ->  y  e.  z ) )
4944, 48alrimi 1522 . . . . . . . 8  |-  ( ( A. x  e.  B  E* y  x A
y  /\  A. x  e.  B  E. y
( x A y  /\  y  e.  z ) )  ->  A. y A. x  e.  B  ( x A y  ->  y  e.  z ) )
5049eximi 1600 . . . . . . 7  |-  ( E. z ( A. x  e.  B  E* y  x A y  /\  A. x  e.  B  E. y ( x A y  /\  y  e.  z ) )  ->  E. z A. y A. x  e.  B  (
x A y  -> 
y  e.  z ) )
5138, 50syl 14 . . . . . 6  |-  ( ( A. z A. x  e.  B  E* y  x A y  /\  E. z A. x  e.  B  E. y ( x A y  /\  y  e.  z ) )  ->  E. z A. y A. x  e.  B  (
x A y  -> 
y  e.  z ) )
527, 37, 51syl2anc 411 . . . . 5  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  E. z A. y A. x  e.  B  ( x A y  ->  y  e.  z ) )
53 r19.23v 2586 . . . . . . 7  |-  ( A. x  e.  B  (
x A y  -> 
y  e.  z )  <-> 
( E. x  e.  B  x A y  ->  y  e.  z ) )
5453albii 1470 . . . . . 6  |-  ( A. y A. x  e.  B  ( x A y  ->  y  e.  z )  <->  A. y ( E. x  e.  B  x A y  ->  y  e.  z ) )
5554exbii 1605 . . . . 5  |-  ( E. z A. y A. x  e.  B  (
x A y  -> 
y  e.  z )  <->  E. z A. y ( E. x  e.  B  x A y  ->  y  e.  z ) )
5652, 55sylib 122 . . . 4  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  E. z A. y ( E. x  e.  B  x A
y  ->  y  e.  z ) )
57 abss 3224 . . . . 5  |-  ( { y  |  E. x  e.  B  x A
y }  C_  z  <->  A. y ( E. x  e.  B  x A
y  ->  y  e.  z ) )
5857exbii 1605 . . . 4  |-  ( E. z { y  |  E. x  e.  B  x A y }  C_  z 
<->  E. z A. y
( E. x  e.  B  x A y  ->  y  e.  z ) )
5956, 58sylibr 134 . . 3  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  E. z { y  |  E. x  e.  B  x A y }  C_  z )
60 dfima2 4968 . . . . 5  |-  ( A
" B )  =  { y  |  E. x  e.  B  x A y }
6160sseq1i 3181 . . . 4  |-  ( ( A " B ) 
C_  z  <->  { y  |  E. x  e.  B  x A y }  C_  z )
6261exbii 1605 . . 3  |-  ( E. z ( A " B )  C_  z  <->  E. z { y  |  E. x  e.  B  x A y }  C_  z )
6359, 62sylibr 134 . 2  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  E. z
( A " B
)  C_  z )
64 vex 2740 . . . 4  |-  z  e. 
_V
6564ssex 4137 . . 3  |-  ( ( A " B ) 
C_  z  ->  ( A " B )  e. 
_V )
6665exlimiv 1598 . 2  |-  ( E. z ( A " B )  C_  z  ->  ( A " B
)  e.  _V )
6763, 66syl 14 1  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  ( A " B )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978   A.wal 1351    = wceq 1353   E.wex 1492   E!weu 2026   E*wmo 2027    e. wcel 2148   {cab 2163   A.wral 2455   E.wrex 2456   _Vcvv 2737    C_ wss 3129   class class class wbr 4000   dom cdm 4623   "cima 4626   Rel wrel 4628   Fun wfun 5206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-pow 4171  ax-pr 4206
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-br 4001  df-opab 4062  df-id 4290  df-xp 4629  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-fun 5214
This theorem is referenced by:  funimaexg  5296
  Copyright terms: Public domain W3C validator