| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-inex | Unicode version | ||
| Description: The intersection of two sets is a set, from bounded separation. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-inex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisset 2791 |
. 2
| |
| 2 | elisset 2791 |
. 2
| |
| 3 | ax-17 1550 |
. . . 4
| |
| 4 | 19.29r 1645 |
. . . 4
| |
| 5 | 3, 4 | sylan2 286 |
. . 3
|
| 6 | ax-17 1550 |
. . . . 5
| |
| 7 | 19.29 1644 |
. . . . 5
| |
| 8 | 6, 7 | sylan 283 |
. . . 4
|
| 9 | 8 | eximi 1624 |
. . 3
|
| 10 | ineq12 3377 |
. . . . 5
| |
| 11 | 10 | 2eximi 1625 |
. . . 4
|
| 12 | dfin5 3181 |
. . . . . . 7
| |
| 13 | vex 2779 |
. . . . . . . 8
| |
| 14 | ax-bdel 15956 |
. . . . . . . . 9
| |
| 15 | bdcv 15983 |
. . . . . . . . 9
| |
| 16 | 14, 15 | bdrabexg 16041 |
. . . . . . . 8
|
| 17 | 13, 16 | ax-mp 5 |
. . . . . . 7
|
| 18 | 12, 17 | eqeltri 2280 |
. . . . . 6
|
| 19 | eleq1 2270 |
. . . . . 6
| |
| 20 | 18, 19 | mpbii 148 |
. . . . 5
|
| 21 | 20 | exlimivv 1921 |
. . . 4
|
| 22 | 11, 21 | syl 14 |
. . 3
|
| 23 | 5, 9, 22 | 3syl 17 |
. 2
|
| 24 | 1, 2, 23 | syl2an 289 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-bd0 15948 ax-bdan 15950 ax-bdel 15956 ax-bdsb 15957 ax-bdsep 16019 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rab 2495 df-v 2778 df-in 3180 df-ss 3187 df-bdc 15976 |
| This theorem is referenced by: speano5 16079 |
| Copyright terms: Public domain | W3C validator |