Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-inex | Unicode version |
Description: The intersection of two sets is a set, from bounded separation. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-inex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisset 2740 | . 2 | |
2 | elisset 2740 | . 2 | |
3 | ax-17 1514 | . . . 4 | |
4 | 19.29r 1609 | . . . 4 | |
5 | 3, 4 | sylan2 284 | . . 3 |
6 | ax-17 1514 | . . . . 5 | |
7 | 19.29 1608 | . . . . 5 | |
8 | 6, 7 | sylan 281 | . . . 4 |
9 | 8 | eximi 1588 | . . 3 |
10 | ineq12 3318 | . . . . 5 | |
11 | 10 | 2eximi 1589 | . . . 4 |
12 | dfin5 3123 | . . . . . . 7 | |
13 | vex 2729 | . . . . . . . 8 | |
14 | ax-bdel 13703 | . . . . . . . . 9 BOUNDED | |
15 | bdcv 13730 | . . . . . . . . 9 BOUNDED | |
16 | 14, 15 | bdrabexg 13788 | . . . . . . . 8 |
17 | 13, 16 | ax-mp 5 | . . . . . . 7 |
18 | 12, 17 | eqeltri 2239 | . . . . . 6 |
19 | eleq1 2229 | . . . . . 6 | |
20 | 18, 19 | mpbii 147 | . . . . 5 |
21 | 20 | exlimivv 1884 | . . . 4 |
22 | 11, 21 | syl 14 | . . 3 |
23 | 5, 9, 22 | 3syl 17 | . 2 |
24 | 1, 2, 23 | syl2an 287 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wal 1341 wceq 1343 wex 1480 wcel 2136 crab 2448 cvv 2726 cin 3115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-bd0 13695 ax-bdan 13697 ax-bdel 13703 ax-bdsb 13704 ax-bdsep 13766 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rab 2453 df-v 2728 df-in 3122 df-ss 3129 df-bdc 13723 |
This theorem is referenced by: speano5 13826 |
Copyright terms: Public domain | W3C validator |