| Mathbox for BJ | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-inex | Unicode version | ||
| Description: The intersection of two sets is a set, from bounded separation. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.) | 
| Ref | Expression | 
|---|---|
| bj-inex | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elisset 2777 | 
. 2
 | |
| 2 | elisset 2777 | 
. 2
 | |
| 3 | ax-17 1540 | 
. . . 4
 | |
| 4 | 19.29r 1635 | 
. . . 4
 | |
| 5 | 3, 4 | sylan2 286 | 
. . 3
 | 
| 6 | ax-17 1540 | 
. . . . 5
 | |
| 7 | 19.29 1634 | 
. . . . 5
 | |
| 8 | 6, 7 | sylan 283 | 
. . . 4
 | 
| 9 | 8 | eximi 1614 | 
. . 3
 | 
| 10 | ineq12 3359 | 
. . . . 5
 | |
| 11 | 10 | 2eximi 1615 | 
. . . 4
 | 
| 12 | dfin5 3164 | 
. . . . . . 7
 | |
| 13 | vex 2766 | 
. . . . . . . 8
 | |
| 14 | ax-bdel 15467 | 
. . . . . . . . 9
 | |
| 15 | bdcv 15494 | 
. . . . . . . . 9
 | |
| 16 | 14, 15 | bdrabexg 15552 | 
. . . . . . . 8
 | 
| 17 | 13, 16 | ax-mp 5 | 
. . . . . . 7
 | 
| 18 | 12, 17 | eqeltri 2269 | 
. . . . . 6
 | 
| 19 | eleq1 2259 | 
. . . . . 6
 | |
| 20 | 18, 19 | mpbii 148 | 
. . . . 5
 | 
| 21 | 20 | exlimivv 1911 | 
. . . 4
 | 
| 22 | 11, 21 | syl 14 | 
. . 3
 | 
| 23 | 5, 9, 22 | 3syl 17 | 
. 2
 | 
| 24 | 1, 2, 23 | syl2an 289 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-bd0 15459 ax-bdan 15461 ax-bdel 15467 ax-bdsb 15468 ax-bdsep 15530 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 df-in 3163 df-ss 3170 df-bdc 15487 | 
| This theorem is referenced by: speano5 15590 | 
| Copyright terms: Public domain | W3C validator |