Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-inex | Unicode version |
Description: The intersection of two sets is a set, from bounded separation. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-inex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisset 2744 | . 2 | |
2 | elisset 2744 | . 2 | |
3 | ax-17 1519 | . . . 4 | |
4 | 19.29r 1614 | . . . 4 | |
5 | 3, 4 | sylan2 284 | . . 3 |
6 | ax-17 1519 | . . . . 5 | |
7 | 19.29 1613 | . . . . 5 | |
8 | 6, 7 | sylan 281 | . . . 4 |
9 | 8 | eximi 1593 | . . 3 |
10 | ineq12 3323 | . . . . 5 | |
11 | 10 | 2eximi 1594 | . . . 4 |
12 | dfin5 3128 | . . . . . . 7 | |
13 | vex 2733 | . . . . . . . 8 | |
14 | ax-bdel 13856 | . . . . . . . . 9 BOUNDED | |
15 | bdcv 13883 | . . . . . . . . 9 BOUNDED | |
16 | 14, 15 | bdrabexg 13941 | . . . . . . . 8 |
17 | 13, 16 | ax-mp 5 | . . . . . . 7 |
18 | 12, 17 | eqeltri 2243 | . . . . . 6 |
19 | eleq1 2233 | . . . . . 6 | |
20 | 18, 19 | mpbii 147 | . . . . 5 |
21 | 20 | exlimivv 1889 | . . . 4 |
22 | 11, 21 | syl 14 | . . 3 |
23 | 5, 9, 22 | 3syl 17 | . 2 |
24 | 1, 2, 23 | syl2an 287 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wal 1346 wceq 1348 wex 1485 wcel 2141 crab 2452 cvv 2730 cin 3120 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-bd0 13848 ax-bdan 13850 ax-bdel 13856 ax-bdsb 13857 ax-bdsep 13919 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rab 2457 df-v 2732 df-in 3127 df-ss 3134 df-bdc 13876 |
This theorem is referenced by: speano5 13979 |
Copyright terms: Public domain | W3C validator |