Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-inex Unicode version

Theorem bj-inex 16270
Description: The intersection of two sets is a set, from bounded separation. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-inex  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  i^i  B
)  e.  _V )

Proof of Theorem bj-inex
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elisset 2814 . 2  |-  ( A  e.  V  ->  E. x  x  =  A )
2 elisset 2814 . 2  |-  ( B  e.  W  ->  E. y 
y  =  B )
3 ax-17 1572 . . . 4  |-  ( E. y  y  =  B  ->  A. x E. y 
y  =  B )
4 19.29r 1667 . . . 4  |-  ( ( E. x  x  =  A  /\  A. x E. y  y  =  B )  ->  E. x
( x  =  A  /\  E. y  y  =  B ) )
53, 4sylan2 286 . . 3  |-  ( ( E. x  x  =  A  /\  E. y 
y  =  B )  ->  E. x ( x  =  A  /\  E. y  y  =  B
) )
6 ax-17 1572 . . . . 5  |-  ( x  =  A  ->  A. y  x  =  A )
7 19.29 1666 . . . . 5  |-  ( ( A. y  x  =  A  /\  E. y 
y  =  B )  ->  E. y ( x  =  A  /\  y  =  B ) )
86, 7sylan 283 . . . 4  |-  ( ( x  =  A  /\  E. y  y  =  B )  ->  E. y
( x  =  A  /\  y  =  B ) )
98eximi 1646 . . 3  |-  ( E. x ( x  =  A  /\  E. y 
y  =  B )  ->  E. x E. y
( x  =  A  /\  y  =  B ) )
10 ineq12 3400 . . . . 5  |-  ( ( x  =  A  /\  y  =  B )  ->  ( x  i^i  y
)  =  ( A  i^i  B ) )
11102eximi 1647 . . . 4  |-  ( E. x E. y ( x  =  A  /\  y  =  B )  ->  E. x E. y
( x  i^i  y
)  =  ( A  i^i  B ) )
12 dfin5 3204 . . . . . . 7  |-  ( x  i^i  y )  =  { z  e.  x  |  z  e.  y }
13 vex 2802 . . . . . . . 8  |-  x  e. 
_V
14 ax-bdel 16184 . . . . . . . . 9  |- BOUNDED  z  e.  y
15 bdcv 16211 . . . . . . . . 9  |- BOUNDED  x
1614, 15bdrabexg 16269 . . . . . . . 8  |-  ( x  e.  _V  ->  { z  e.  x  |  z  e.  y }  e.  _V )
1713, 16ax-mp 5 . . . . . . 7  |-  { z  e.  x  |  z  e.  y }  e.  _V
1812, 17eqeltri 2302 . . . . . 6  |-  ( x  i^i  y )  e. 
_V
19 eleq1 2292 . . . . . 6  |-  ( ( x  i^i  y )  =  ( A  i^i  B )  ->  ( (
x  i^i  y )  e.  _V  <->  ( A  i^i  B )  e.  _V )
)
2018, 19mpbii 148 . . . . 5  |-  ( ( x  i^i  y )  =  ( A  i^i  B )  ->  ( A  i^i  B )  e.  _V )
2120exlimivv 1943 . . . 4  |-  ( E. x E. y ( x  i^i  y )  =  ( A  i^i  B )  ->  ( A  i^i  B )  e.  _V )
2211, 21syl 14 . . 3  |-  ( E. x E. y ( x  =  A  /\  y  =  B )  ->  ( A  i^i  B
)  e.  _V )
235, 9, 223syl 17 . 2  |-  ( ( E. x  x  =  A  /\  E. y 
y  =  B )  ->  ( A  i^i  B )  e.  _V )
241, 2, 23syl2an 289 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  i^i  B
)  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1393    = wceq 1395   E.wex 1538    e. wcel 2200   {crab 2512   _Vcvv 2799    i^i cin 3196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-bd0 16176  ax-bdan 16178  ax-bdel 16184  ax-bdsb 16185  ax-bdsep 16247
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rab 2517  df-v 2801  df-in 3203  df-ss 3210  df-bdc 16204
This theorem is referenced by:  speano5  16307
  Copyright terms: Public domain W3C validator