Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > equvini | Unicode version |
Description: A variable introduction law for equality. Lemma 15 of [Monk2] p. 109, however we do not require to be distinct from and (making the proof longer). (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
equvini |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax12or 1501 | . 2 | |
2 | equcomi 1697 | . . . . . . 7 | |
3 | 2 | alimi 1448 | . . . . . 6 |
4 | a9e 1689 | . . . . . 6 | |
5 | 3, 4 | jctir 311 | . . . . 5 |
6 | 5 | a1d 22 | . . . 4 |
7 | 19.29 1613 | . . . 4 | |
8 | 6, 7 | syl6 33 | . . 3 |
9 | a9e 1689 | . . . . . . . 8 | |
10 | 2 | eximi 1593 | . . . . . . . 8 |
11 | 9, 10 | ax-mp 5 | . . . . . . 7 |
12 | 11 | 2a1i 27 | . . . . . 6 |
13 | 12 | anc2ri 328 | . . . . 5 |
14 | 19.29r 1614 | . . . . 5 | |
15 | 13, 14 | syl6 33 | . . . 4 |
16 | ax-8 1497 | . . . . . . . . . . . 12 | |
17 | 16 | anc2li 327 | . . . . . . . . . . 11 |
18 | 17 | equcoms 1701 | . . . . . . . . . 10 |
19 | 18 | com12 30 | . . . . . . . . 9 |
20 | 19 | alimi 1448 | . . . . . . . 8 |
21 | exim 1592 | . . . . . . . 8 | |
22 | 20, 21 | syl 14 | . . . . . . 7 |
23 | 9, 22 | mpi 15 | . . . . . 6 |
24 | 23 | imim2i 12 | . . . . 5 |
25 | 24 | sps 1530 | . . . 4 |
26 | 15, 25 | jaoi 711 | . . 3 |
27 | 8, 26 | jaoi 711 | . 2 |
28 | 1, 27 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 703 wal 1346 wceq 1348 wex 1485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-i12 1500 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: sbequi 1832 equvin 1856 |
Copyright terms: Public domain | W3C validator |