| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > equvini | Unicode version | ||
| Description: A variable introduction
law for equality. Lemma 15 of [Monk2] p. 109,
however we do not require |
| Ref | Expression |
|---|---|
| equvini |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax12or 1522 |
. 2
| |
| 2 | equcomi 1718 |
. . . . . . 7
| |
| 3 | 2 | alimi 1469 |
. . . . . 6
|
| 4 | a9e 1710 |
. . . . . 6
| |
| 5 | 3, 4 | jctir 313 |
. . . . 5
|
| 6 | 5 | a1d 22 |
. . . 4
|
| 7 | 19.29 1634 |
. . . 4
| |
| 8 | 6, 7 | syl6 33 |
. . 3
|
| 9 | a9e 1710 |
. . . . . . . 8
| |
| 10 | 2 | eximi 1614 |
. . . . . . . 8
|
| 11 | 9, 10 | ax-mp 5 |
. . . . . . 7
|
| 12 | 11 | 2a1i 27 |
. . . . . 6
|
| 13 | 12 | anc2ri 330 |
. . . . 5
|
| 14 | 19.29r 1635 |
. . . . 5
| |
| 15 | 13, 14 | syl6 33 |
. . . 4
|
| 16 | ax-8 1518 |
. . . . . . . . . . . 12
| |
| 17 | 16 | anc2li 329 |
. . . . . . . . . . 11
|
| 18 | 17 | equcoms 1722 |
. . . . . . . . . 10
|
| 19 | 18 | com12 30 |
. . . . . . . . 9
|
| 20 | 19 | alimi 1469 |
. . . . . . . 8
|
| 21 | exim 1613 |
. . . . . . . 8
| |
| 22 | 20, 21 | syl 14 |
. . . . . . 7
|
| 23 | 9, 22 | mpi 15 |
. . . . . 6
|
| 24 | 23 | imim2i 12 |
. . . . 5
|
| 25 | 24 | sps 1551 |
. . . 4
|
| 26 | 15, 25 | jaoi 717 |
. . 3
|
| 27 | 8, 26 | jaoi 717 |
. 2
|
| 28 | 1, 27 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-i12 1521 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sbequi 1853 equvin 1877 |
| Copyright terms: Public domain | W3C validator |