ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.9v Unicode version

Theorem 19.9v 1881
Description: Special case of Theorem 19.9 of [Margaris] p. 89. (Contributed by NM, 28-May-1995.) (Revised by NM, 21-May-2007.)
Assertion
Ref Expression
19.9v  |-  ( E. x ph  <->  ph )
Distinct variable group:    ph, x

Proof of Theorem 19.9v
StepHypRef Expression
1 ax-17 1536 . 2  |-  ( ph  ->  A. x ph )
2119.9h 1653 1  |-  ( E. x ph  <->  ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   E.wex 1502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-4 1520  ax-17 1536
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  spc2gv  2840  spc3gv  2842  mo2icl  2928  brtpos2  6266
  Copyright terms: Public domain W3C validator