Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 4exbidv | Unicode version |
Description: Formula-building rule for 4 existential quantifiers (deduction form). (Contributed by NM, 3-Aug-1995.) |
Ref | Expression |
---|---|
4exbidv.1 |
Ref | Expression |
---|---|
4exbidv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4exbidv.1 | . . 3 | |
2 | 1 | 2exbidv 1861 | . 2 |
3 | 2 | 2exbidv 1861 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wex 1485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: ceqsex8v 2775 copsex4g 4232 opbrop 4690 ovi3 5989 brecop 6603 th3q 6618 dfplpq2 7316 dfmpq2 7317 enq0sym 7394 enq0ref 7395 enq0tr 7396 enq0breq 7398 addnq0mo 7409 mulnq0mo 7410 addnnnq0 7411 mulnnnq0 7412 addsrmo 7705 mulsrmo 7706 addsrpr 7707 mulsrpr 7708 |
Copyright terms: Public domain | W3C validator |