ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4exbidv Unicode version

Theorem 4exbidv 1858
Description: Formula-building rule for 4 existential quantifiers (deduction form). (Contributed by NM, 3-Aug-1995.)
Hypothesis
Ref Expression
4exbidv.1  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
4exbidv  |-  ( ph  ->  ( E. x E. y E. z E. w ps 
<->  E. x E. y E. z E. w ch ) )
Distinct variable groups:    ph, x    ph, y    ph, z    ph, w
Allowed substitution hints:    ps( x, y, z, w)    ch( x, y, z, w)

Proof of Theorem 4exbidv
StepHypRef Expression
1 4exbidv.1 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
212exbidv 1856 . 2  |-  ( ph  ->  ( E. z E. w ps  <->  E. z E. w ch ) )
322exbidv 1856 1  |-  ( ph  ->  ( E. x E. y E. z E. w ps 
<->  E. x E. y E. z E. w ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   E.wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  ceqsex8v  2771  copsex4g  4225  opbrop  4683  ovi3  5978  brecop  6591  th3q  6606  dfplpq2  7295  dfmpq2  7296  enq0sym  7373  enq0ref  7374  enq0tr  7375  enq0breq  7377  addnq0mo  7388  mulnq0mo  7389  addnnnq0  7390  mulnnnq0  7391  addsrmo  7684  mulsrmo  7685  addsrpr  7686  mulsrpr  7687
  Copyright terms: Public domain W3C validator