ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4exbidv Unicode version

Theorem 4exbidv 1881
Description: Formula-building rule for 4 existential quantifiers (deduction form). (Contributed by NM, 3-Aug-1995.)
Hypothesis
Ref Expression
4exbidv.1  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
4exbidv  |-  ( ph  ->  ( E. x E. y E. z E. w ps 
<->  E. x E. y E. z E. w ch ) )
Distinct variable groups:    ph, x    ph, y    ph, z    ph, w
Allowed substitution hints:    ps( x, y, z, w)    ch( x, y, z, w)

Proof of Theorem 4exbidv
StepHypRef Expression
1 4exbidv.1 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
212exbidv 1879 . 2  |-  ( ph  ->  ( E. z E. w ps  <->  E. z E. w ch ) )
322exbidv 1879 1  |-  ( ph  ->  ( E. x E. y E. z E. w ps 
<->  E. x E. y E. z E. w ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   E.wex 1503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-ial 1545
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  ceqsex8v  2805  copsex4g  4276  opbrop  4738  ovi3  6055  brecop  6679  th3q  6694  dfplpq2  7414  dfmpq2  7415  enq0sym  7492  enq0ref  7493  enq0tr  7494  enq0breq  7496  addnq0mo  7507  mulnq0mo  7508  addnnnq0  7509  mulnnnq0  7510  addsrmo  7803  mulsrmo  7804  addsrpr  7805  mulsrpr  7806
  Copyright terms: Public domain W3C validator