| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4exbidv | Unicode version | ||
| Description: Formula-building rule for 4 existential quantifiers (deduction form). (Contributed by NM, 3-Aug-1995.) |
| Ref | Expression |
|---|---|
| 4exbidv.1 |
|
| Ref | Expression |
|---|---|
| 4exbidv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4exbidv.1 |
. . 3
| |
| 2 | 1 | 2exbidv 1914 |
. 2
|
| 3 | 2 | 2exbidv 1914 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ceqsex8v 2846 copsex4g 4333 opbrop 4798 ovi3 6142 brecop 6772 th3q 6787 dfplpq2 7541 dfmpq2 7542 enq0sym 7619 enq0ref 7620 enq0tr 7621 enq0breq 7623 addnq0mo 7634 mulnq0mo 7635 addnnnq0 7636 mulnnnq0 7637 addsrmo 7930 mulsrmo 7931 addsrpr 7932 mulsrpr 7933 |
| Copyright terms: Public domain | W3C validator |