Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 4exbidv | Unicode version |
Description: Formula-building rule for 4 existential quantifiers (deduction form). (Contributed by NM, 3-Aug-1995.) |
Ref | Expression |
---|---|
4exbidv.1 |
Ref | Expression |
---|---|
4exbidv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4exbidv.1 | . . 3 | |
2 | 1 | 2exbidv 1848 | . 2 |
3 | 2 | 2exbidv 1848 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wex 1472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-4 1490 ax-17 1506 ax-ial 1514 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: ceqsex8v 2757 copsex4g 4207 opbrop 4664 ovi3 5954 brecop 6567 th3q 6582 dfplpq2 7268 dfmpq2 7269 enq0sym 7346 enq0ref 7347 enq0tr 7348 enq0breq 7350 addnq0mo 7361 mulnq0mo 7362 addnnnq0 7363 mulnnnq0 7364 addsrmo 7657 mulsrmo 7658 addsrpr 7659 mulsrpr 7660 |
Copyright terms: Public domain | W3C validator |