ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4exbidv Unicode version

Theorem 4exbidv 1850
Description: Formula-building rule for 4 existential quantifiers (deduction form). (Contributed by NM, 3-Aug-1995.)
Hypothesis
Ref Expression
4exbidv.1  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
4exbidv  |-  ( ph  ->  ( E. x E. y E. z E. w ps 
<->  E. x E. y E. z E. w ch ) )
Distinct variable groups:    ph, x    ph, y    ph, z    ph, w
Allowed substitution hints:    ps( x, y, z, w)    ch( x, y, z, w)

Proof of Theorem 4exbidv
StepHypRef Expression
1 4exbidv.1 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
212exbidv 1848 . 2  |-  ( ph  ->  ( E. z E. w ps  <->  E. z E. w ch ) )
322exbidv 1848 1  |-  ( ph  ->  ( E. x E. y E. z E. w ps 
<->  E. x E. y E. z E. w ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   E.wex 1472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1427  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-4 1490  ax-17 1506  ax-ial 1514
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  ceqsex8v  2757  copsex4g  4207  opbrop  4664  ovi3  5954  brecop  6567  th3q  6582  dfplpq2  7268  dfmpq2  7269  enq0sym  7346  enq0ref  7347  enq0tr  7348  enq0breq  7350  addnq0mo  7361  mulnq0mo  7362  addnnnq0  7363  mulnnnq0  7364  addsrmo  7657  mulsrmo  7658  addsrpr  7659  mulsrpr  7660
  Copyright terms: Public domain W3C validator