| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4exbidv | Unicode version | ||
| Description: Formula-building rule for 4 existential quantifiers (deduction form). (Contributed by NM, 3-Aug-1995.) |
| Ref | Expression |
|---|---|
| 4exbidv.1 |
|
| Ref | Expression |
|---|---|
| 4exbidv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4exbidv.1 |
. . 3
| |
| 2 | 1 | 2exbidv 1891 |
. 2
|
| 3 | 2 | 2exbidv 1891 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ceqsex8v 2818 copsex4g 4292 opbrop 4755 ovi3 6085 brecop 6714 th3q 6729 dfplpq2 7469 dfmpq2 7470 enq0sym 7547 enq0ref 7548 enq0tr 7549 enq0breq 7551 addnq0mo 7562 mulnq0mo 7563 addnnnq0 7564 mulnnnq0 7565 addsrmo 7858 mulsrmo 7859 addsrpr 7860 mulsrpr 7861 |
| Copyright terms: Public domain | W3C validator |