| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4exbidv | Unicode version | ||
| Description: Formula-building rule for 4 existential quantifiers (deduction form). (Contributed by NM, 3-Aug-1995.) |
| Ref | Expression |
|---|---|
| 4exbidv.1 |
|
| Ref | Expression |
|---|---|
| 4exbidv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4exbidv.1 |
. . 3
| |
| 2 | 1 | 2exbidv 1882 |
. 2
|
| 3 | 2 | 2exbidv 1882 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ceqsex8v 2809 copsex4g 4280 opbrop 4742 ovi3 6060 brecop 6684 th3q 6699 dfplpq2 7421 dfmpq2 7422 enq0sym 7499 enq0ref 7500 enq0tr 7501 enq0breq 7503 addnq0mo 7514 mulnq0mo 7515 addnnnq0 7516 mulnnnq0 7517 addsrmo 7810 mulsrmo 7811 addsrpr 7812 mulsrpr 7813 |
| Copyright terms: Public domain | W3C validator |