ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4exbidv Unicode version

Theorem 4exbidv 1893
Description: Formula-building rule for 4 existential quantifiers (deduction form). (Contributed by NM, 3-Aug-1995.)
Hypothesis
Ref Expression
4exbidv.1  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
4exbidv  |-  ( ph  ->  ( E. x E. y E. z E. w ps 
<->  E. x E. y E. z E. w ch ) )
Distinct variable groups:    ph, x    ph, y    ph, z    ph, w
Allowed substitution hints:    ps( x, y, z, w)    ch( x, y, z, w)

Proof of Theorem 4exbidv
StepHypRef Expression
1 4exbidv.1 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
212exbidv 1891 . 2  |-  ( ph  ->  ( E. z E. w ps  <->  E. z E. w ch ) )
322exbidv 1891 1  |-  ( ph  ->  ( E. x E. y E. z E. w ps 
<->  E. x E. y E. z E. w ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   E.wex 1515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-4 1533  ax-17 1549  ax-ial 1557
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  ceqsex8v  2818  copsex4g  4292  opbrop  4755  ovi3  6085  brecop  6714  th3q  6729  dfplpq2  7469  dfmpq2  7470  enq0sym  7547  enq0ref  7548  enq0tr  7549  enq0breq  7551  addnq0mo  7562  mulnq0mo  7563  addnnnq0  7564  mulnnnq0  7565  addsrmo  7858  mulsrmo  7859  addsrpr  7860  mulsrpr  7861
  Copyright terms: Public domain W3C validator