ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.9v GIF version

Theorem 19.9v 1864
Description: Special case of Theorem 19.9 of [Margaris] p. 89. (Contributed by NM, 28-May-1995.) (Revised by NM, 21-May-2007.)
Assertion
Ref Expression
19.9v (∃𝑥𝜑𝜑)
Distinct variable group:   𝜑,𝑥

Proof of Theorem 19.9v
StepHypRef Expression
1 ax-17 1519 . 2 (𝜑 → ∀𝑥𝜑)
2119.9h 1636 1 (∃𝑥𝜑𝜑)
Colors of variables: wff set class
Syntax hints:  wb 104  wex 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  spc2gv  2821  spc3gv  2823  mo2icl  2909  brtpos2  6230
  Copyright terms: Public domain W3C validator