ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spc2gv Unicode version

Theorem spc2gv 2851
Description: Specialization with 2 quantifiers, using implicit substitution. (Contributed by NM, 27-Apr-2004.)
Hypothesis
Ref Expression
spc2egv.1  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
spc2gv  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A. x A. y ph  ->  ps )
)
Distinct variable groups:    x, y, A   
x, B, y    ps, x, y
Allowed substitution hints:    ph( x, y)    V( x, y)    W( x, y)

Proof of Theorem spc2gv
StepHypRef Expression
1 elisset 2774 . . . 4  |-  ( A  e.  V  ->  E. x  x  =  A )
2 elisset 2774 . . . 4  |-  ( B  e.  W  ->  E. y 
y  =  B )
31, 2anim12i 338 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( E. x  x  =  A  /\  E. y  y  =  B
) )
4 eeanv 1948 . . 3  |-  ( E. x E. y ( x  =  A  /\  y  =  B )  <->  ( E. x  x  =  A  /\  E. y 
y  =  B ) )
53, 4sylibr 134 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  E. x E. y
( x  =  A  /\  y  =  B ) )
6 spc2egv.1 . . . . . 6  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)
76biimpcd 159 . . . . 5  |-  ( ph  ->  ( ( x  =  A  /\  y  =  B )  ->  ps ) )
872alimi 1467 . . . 4  |-  ( A. x A. y ph  ->  A. x A. y ( ( x  =  A  /\  y  =  B )  ->  ps )
)
9 exim 1610 . . . . 5  |-  ( A. y ( ( x  =  A  /\  y  =  B )  ->  ps )  ->  ( E. y
( x  =  A  /\  y  =  B )  ->  E. y ps ) )
109alimi 1466 . . . 4  |-  ( A. x A. y ( ( x  =  A  /\  y  =  B )  ->  ps )  ->  A. x
( E. y ( x  =  A  /\  y  =  B )  ->  E. y ps )
)
11 exim 1610 . . . 4  |-  ( A. x ( E. y
( x  =  A  /\  y  =  B )  ->  E. y ps )  ->  ( E. x E. y ( x  =  A  /\  y  =  B )  ->  E. x E. y ps ) )
128, 10, 113syl 17 . . 3  |-  ( A. x A. y ph  ->  ( E. x E. y
( x  =  A  /\  y  =  B )  ->  E. x E. y ps ) )
13 19.9v 1882 . . . 4  |-  ( E. x E. y ps  <->  E. y ps )
14 19.9v 1882 . . . 4  |-  ( E. y ps  <->  ps )
1513, 14bitri 184 . . 3  |-  ( E. x E. y ps  <->  ps )
1612, 15imbitrdi 161 . 2  |-  ( A. x A. y ph  ->  ( E. x E. y
( x  =  A  /\  y  =  B )  ->  ps )
)
175, 16syl5com 29 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A. x A. y ph  ->  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1362    = wceq 1364   E.wex 1503    e. wcel 2164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-v 2762
This theorem is referenced by:  rspc2gv  2876  trel  4134  exmidundif  4235  exmidundifim  4236  elovmpo  6117  seqf1oglem2  10591  seqf1og  10592  cnmpt12  14455  cnmpt22  14462  exmidsbthrlem  15512
  Copyright terms: Public domain W3C validator