ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spc2gv Unicode version

Theorem spc2gv 2800
Description: Specialization with 2 quantifiers, using implicit substitution. (Contributed by NM, 27-Apr-2004.)
Hypothesis
Ref Expression
spc2egv.1  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
spc2gv  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A. x A. y ph  ->  ps )
)
Distinct variable groups:    x, y, A   
x, B, y    ps, x, y
Allowed substitution hints:    ph( x, y)    V( x, y)    W( x, y)

Proof of Theorem spc2gv
StepHypRef Expression
1 elisset 2723 . . . 4  |-  ( A  e.  V  ->  E. x  x  =  A )
2 elisset 2723 . . . 4  |-  ( B  e.  W  ->  E. y 
y  =  B )
31, 2anim12i 336 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( E. x  x  =  A  /\  E. y  y  =  B
) )
4 eeanv 1909 . . 3  |-  ( E. x E. y ( x  =  A  /\  y  =  B )  <->  ( E. x  x  =  A  /\  E. y 
y  =  B ) )
53, 4sylibr 133 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  E. x E. y
( x  =  A  /\  y  =  B ) )
6 spc2egv.1 . . . . . 6  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)
76biimpcd 158 . . . . 5  |-  ( ph  ->  ( ( x  =  A  /\  y  =  B )  ->  ps ) )
872alimi 1433 . . . 4  |-  ( A. x A. y ph  ->  A. x A. y ( ( x  =  A  /\  y  =  B )  ->  ps )
)
9 exim 1576 . . . . 5  |-  ( A. y ( ( x  =  A  /\  y  =  B )  ->  ps )  ->  ( E. y
( x  =  A  /\  y  =  B )  ->  E. y ps ) )
109alimi 1432 . . . 4  |-  ( A. x A. y ( ( x  =  A  /\  y  =  B )  ->  ps )  ->  A. x
( E. y ( x  =  A  /\  y  =  B )  ->  E. y ps )
)
11 exim 1576 . . . 4  |-  ( A. x ( E. y
( x  =  A  /\  y  =  B )  ->  E. y ps )  ->  ( E. x E. y ( x  =  A  /\  y  =  B )  ->  E. x E. y ps ) )
128, 10, 113syl 17 . . 3  |-  ( A. x A. y ph  ->  ( E. x E. y
( x  =  A  /\  y  =  B )  ->  E. x E. y ps ) )
13 19.9v 1848 . . . 4  |-  ( E. x E. y ps  <->  E. y ps )
14 19.9v 1848 . . . 4  |-  ( E. y ps  <->  ps )
1513, 14bitri 183 . . 3  |-  ( E. x E. y ps  <->  ps )
1612, 15syl6ib 160 . 2  |-  ( A. x A. y ph  ->  ( E. x E. y
( x  =  A  /\  y  =  B )  ->  ps )
)
175, 16syl5com 29 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A. x A. y ph  ->  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1330    = wceq 1332   E.wex 1469    e. wcel 2125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-ext 2136
This theorem depends on definitions:  df-bi 116  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-v 2711
This theorem is referenced by:  rspc2gv  2825  trel  4065  exmidundif  4162  exmidundifim  4163  elovmpo  6011  cnmpt12  12634  cnmpt22  12641  exmidsbthrlem  13542
  Copyright terms: Public domain W3C validator