Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > spc3gv | Unicode version |
Description: Specialization with 3 quantifiers, using implicit substitution. (Contributed by NM, 12-May-2008.) |
Ref | Expression |
---|---|
spc3egv.1 |
Ref | Expression |
---|---|
spc3gv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisset 2740 | . . . 4 | |
2 | elisset 2740 | . . . 4 | |
3 | elisset 2740 | . . . 4 | |
4 | 1, 2, 3 | 3anim123i 1174 | . . 3 |
5 | eeeanv 1921 | . . 3 | |
6 | 4, 5 | sylibr 133 | . 2 |
7 | spc3egv.1 | . . . . . . . 8 | |
8 | 7 | biimpcd 158 | . . . . . . 7 |
9 | 8 | 2alimi 1444 | . . . . . 6 |
10 | 9 | alimi 1443 | . . . . 5 |
11 | exim 1587 | . . . . . 6 | |
12 | 11 | 2alimi 1444 | . . . . 5 |
13 | 10, 12 | syl 14 | . . . 4 |
14 | exim 1587 | . . . . 5 | |
15 | 14 | alimi 1443 | . . . 4 |
16 | exim 1587 | . . . 4 | |
17 | 13, 15, 16 | 3syl 17 | . . 3 |
18 | 19.9v 1859 | . . . 4 | |
19 | 19.9v 1859 | . . . 4 | |
20 | 19.9v 1859 | . . . 4 | |
21 | 18, 19, 20 | 3bitri 205 | . . 3 |
22 | 17, 21 | syl6ib 160 | . 2 |
23 | 6, 22 | syl5com 29 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 w3a 968 wal 1341 wceq 1343 wex 1480 wcel 2136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-v 2728 |
This theorem is referenced by: funopg 5222 |
Copyright terms: Public domain | W3C validator |