ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brtpos2 Unicode version

Theorem brtpos2 6114
Description: Value of the transposition at a pair  <. A ,  B >.. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
brtpos2  |-  ( B  e.  V  ->  ( Atpos  F B  <->  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  U. `' { A } F B ) ) )

Proof of Theorem brtpos2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reltpos 6113 . . . 4  |-  Rel tpos  F
21brrelex1i 4550 . . 3  |-  ( Atpos 
F B  ->  A  e.  _V )
32a1i 9 . 2  |-  ( B  e.  V  ->  ( Atpos  F B  ->  A  e.  _V ) )
4 elex 2669 . . . 4  |-  ( A  e.  ( `' dom  F  u.  { (/) } )  ->  A  e.  _V )
54adantr 272 . . 3  |-  ( ( A  e.  ( `' dom  F  u.  { (/)
} )  /\  U. `' { A } F B )  ->  A  e.  _V )
65a1i 9 . 2  |-  ( B  e.  V  ->  (
( A  e.  ( `' dom  F  u.  { (/)
} )  /\  U. `' { A } F B )  ->  A  e.  _V ) )
7 df-tpos 6108 . . . . . 6  |- tpos  F  =  ( F  o.  (
x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) )
87breqi 3903 . . . . 5  |-  ( Atpos 
F B  <->  A ( F  o.  ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } ) ) B )
9 brcog 4674 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  V )  ->  ( A ( F  o.  ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } ) ) B  <->  E. y
( A ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } ) y  /\  y F B ) ) )
108, 9syl5bb 191 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  V )  ->  ( Atpos  F B  <->  E. y ( A ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) y  /\  y F B ) ) )
11 funmpt 5129 . . . . . . . . . . 11  |-  Fun  (
x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )
12 funbrfv2b 5432 . . . . . . . . . . 11  |-  ( Fun  ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )  ->  ( A ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) y  <->  ( A  e. 
dom  ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } )  /\  ( ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } ) `  A
)  =  y ) ) )
1311, 12ax-mp 5 . . . . . . . . . 10  |-  ( A ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) y  <->  ( A  e. 
dom  ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } )  /\  ( ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } ) `  A
)  =  y ) )
14 vex 2661 . . . . . . . . . . . . . . . . 17  |-  x  e. 
_V
15 snexg 4076 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  _V  ->  { x }  e.  _V )
1614, 15ax-mp 5 . . . . . . . . . . . . . . . 16  |-  { x }  e.  _V
1716cnvex 5045 . . . . . . . . . . . . . . 15  |-  `' {
x }  e.  _V
1817uniex 4327 . . . . . . . . . . . . . 14  |-  U. `' { x }  e.  _V
19 eqid 2115 . . . . . . . . . . . . . 14  |-  ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } )  =  ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )
2018, 19dmmpti 5220 . . . . . . . . . . . . 13  |-  dom  (
x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )  =  ( `' dom  F  u.  { (/) } )
2120eleq2i 2182 . . . . . . . . . . . 12  |-  ( A  e.  dom  ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } )  <->  A  e.  ( `' dom  F  u.  { (/)
} ) )
22 eqcom 2117 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) `
 A )  =  y  <->  y  =  ( ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) `
 A ) )
2321, 22anbi12i 453 . . . . . . . . . . 11  |-  ( ( A  e.  dom  (
x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )  /\  ( ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } ) `  A
)  =  y )  <-> 
( A  e.  ( `' dom  F  u.  { (/)
} )  /\  y  =  ( ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } ) `  A
) ) )
24 snexg 4076 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ( `' dom  F  u.  { (/) } )  ->  { A }  e.  _V )
25 cnvexg 5044 . . . . . . . . . . . . . . . 16  |-  ( { A }  e.  _V  ->  `' { A }  e.  _V )
2624, 25syl 14 . . . . . . . . . . . . . . 15  |-  ( A  e.  ( `' dom  F  u.  { (/) } )  ->  `' { A }  e.  _V )
27 uniexg 4329 . . . . . . . . . . . . . . 15  |-  ( `' { A }  e.  _V  ->  U. `' { A }  e.  _V )
2826, 27syl 14 . . . . . . . . . . . . . 14  |-  ( A  e.  ( `' dom  F  u.  { (/) } )  ->  U. `' { A }  e.  _V )
29 sneq 3506 . . . . . . . . . . . . . . . . 17  |-  ( x  =  A  ->  { x }  =  { A } )
3029cnveqd 4683 . . . . . . . . . . . . . . . 16  |-  ( x  =  A  ->  `' { x }  =  `' { A } )
3130unieqd 3715 . . . . . . . . . . . . . . 15  |-  ( x  =  A  ->  U. `' { x }  =  U. `' { A } )
3231, 19fvmptg 5463 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( `' dom  F  u.  { (/)
} )  /\  U. `' { A }  e.  _V )  ->  ( ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) `
 A )  = 
U. `' { A } )
3328, 32mpdan 415 . . . . . . . . . . . . 13  |-  ( A  e.  ( `' dom  F  u.  { (/) } )  ->  ( ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } ) `  A
)  =  U. `' { A } )
3433eqeq2d 2127 . . . . . . . . . . . 12  |-  ( A  e.  ( `' dom  F  u.  { (/) } )  ->  ( y  =  ( ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } ) `
 A )  <->  y  =  U. `' { A } ) )
3534pm5.32i 447 . . . . . . . . . . 11  |-  ( ( A  e.  ( `' dom  F  u.  { (/)
} )  /\  y  =  ( ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } ) `  A
) )  <->  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  y  =  U. `' { A } ) )
3623, 35bitri 183 . . . . . . . . . 10  |-  ( ( A  e.  dom  (
x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )  /\  ( ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } ) `  A
)  =  y )  <-> 
( A  e.  ( `' dom  F  u.  { (/)
} )  /\  y  =  U. `' { A } ) )
3713, 36bitri 183 . . . . . . . . 9  |-  ( A ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) y  <->  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  y  =  U. `' { A } ) )
38 ancom 264 . . . . . . . . 9  |-  ( ( A  e.  ( `' dom  F  u.  { (/)
} )  /\  y  =  U. `' { A } )  <->  ( y  =  U. `' { A }  /\  A  e.  ( `' dom  F  u.  { (/)
} ) ) )
3937, 38bitri 183 . . . . . . . 8  |-  ( A ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) y  <->  ( y  = 
U. `' { A }  /\  A  e.  ( `' dom  F  u.  { (/)
} ) ) )
4039anbi1i 451 . . . . . . 7  |-  ( ( A ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } ) y  /\  y F B )  <->  ( (
y  =  U. `' { A }  /\  A  e.  ( `' dom  F  u.  { (/) } ) )  /\  y F B ) )
41 anass 396 . . . . . . 7  |-  ( ( ( y  =  U. `' { A }  /\  A  e.  ( `' dom  F  u.  { (/) } ) )  /\  y F B )  <->  ( y  =  U. `' { A }  /\  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  y F B ) ) )
4240, 41bitri 183 . . . . . 6  |-  ( ( A ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } ) y  /\  y F B )  <->  ( y  =  U. `' { A }  /\  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  y F B ) ) )
4342exbii 1567 . . . . 5  |-  ( E. y ( A ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) y  /\  y F B )  <->  E. y
( y  =  U. `' { A }  /\  ( A  e.  ( `' dom  F  u.  { (/)
} )  /\  y F B ) ) )
44 exsimpr 1580 . . . . . . 7  |-  ( E. y ( y  = 
U. `' { A }  /\  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  y F B ) )  ->  E. y ( A  e.  ( `' dom  F  u.  { (/) } )  /\  y F B ) )
45 exsimpl 1579 . . . . . . . 8  |-  ( E. y ( A  e.  ( `' dom  F  u.  { (/) } )  /\  y F B )  ->  E. y  A  e.  ( `' dom  F  u.  { (/)
} ) )
46 19.9v 1825 . . . . . . . 8  |-  ( E. y  A  e.  ( `' dom  F  u.  { (/)
} )  <->  A  e.  ( `' dom  F  u.  { (/)
} ) )
4745, 46sylib 121 . . . . . . 7  |-  ( E. y ( A  e.  ( `' dom  F  u.  { (/) } )  /\  y F B )  ->  A  e.  ( `' dom  F  u.  { (/) } ) )
4844, 47syl 14 . . . . . 6  |-  ( E. y ( y  = 
U. `' { A }  /\  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  y F B ) )  ->  A  e.  ( `' dom  F  u.  { (/)
} ) )
49 simpl 108 . . . . . 6  |-  ( ( A  e.  ( `' dom  F  u.  { (/)
} )  /\  U. `' { A } F B )  ->  A  e.  ( `' dom  F  u.  { (/) } ) )
50 breq1 3900 . . . . . . . . 9  |-  ( y  =  U. `' { A }  ->  ( y F B  <->  U. `' { A } F B ) )
5150anbi2d 457 . . . . . . . 8  |-  ( y  =  U. `' { A }  ->  ( ( A  e.  ( `' dom  F  u.  { (/)
} )  /\  y F B )  <->  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  U. `' { A } F B ) ) )
5251ceqsexgv 2786 . . . . . . 7  |-  ( U. `' { A }  e.  _V  ->  ( E. y
( y  =  U. `' { A }  /\  ( A  e.  ( `' dom  F  u.  { (/)
} )  /\  y F B ) )  <->  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  U. `' { A } F B ) ) )
5328, 52syl 14 . . . . . 6  |-  ( A  e.  ( `' dom  F  u.  { (/) } )  ->  ( E. y
( y  =  U. `' { A }  /\  ( A  e.  ( `' dom  F  u.  { (/)
} )  /\  y F B ) )  <->  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  U. `' { A } F B ) ) )
5448, 49, 53pm5.21nii 676 . . . . 5  |-  ( E. y ( y  = 
U. `' { A }  /\  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  y F B ) )  <-> 
( A  e.  ( `' dom  F  u.  { (/)
} )  /\  U. `' { A } F B ) )
5543, 54bitri 183 . . . 4  |-  ( E. y ( A ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) y  /\  y F B )  <->  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  U. `' { A } F B ) )
5610, 55syl6bb 195 . . 3  |-  ( ( A  e.  _V  /\  B  e.  V )  ->  ( Atpos  F B  <-> 
( A  e.  ( `' dom  F  u.  { (/)
} )  /\  U. `' { A } F B ) ) )
5756expcom 115 . 2  |-  ( B  e.  V  ->  ( A  e.  _V  ->  ( Atpos  F B  <->  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  U. `' { A } F B ) ) ) )
583, 6, 57pm5.21ndd 677 1  |-  ( B  e.  V  ->  ( Atpos  F B  <->  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  U. `' { A } F B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1314   E.wex 1451    e. wcel 1463   _Vcvv 2658    u. cun 3037   (/)c0 3331   {csn 3495   U.cuni 3704   class class class wbr 3897    |-> cmpt 3957   `'ccnv 4506   dom cdm 4507    o. ccom 4511   Fun wfun 5085   ` cfv 5091  tpos ctpos 6107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-un 4323
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rex 2397  df-rab 2400  df-v 2660  df-sbc 2881  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-br 3898  df-opab 3958  df-mpt 3959  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-fv 5099  df-tpos 6108
This theorem is referenced by:  brtpos0  6115  reldmtpos  6116  brtposg  6117  dftpos4  6126  tpostpos  6127
  Copyright terms: Public domain W3C validator