![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exlimdd | Unicode version |
Description: Existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 9-Feb-2017.) |
Ref | Expression |
---|---|
exlimdd.1 |
![]() ![]() ![]() ![]() |
exlimdd.2 |
![]() ![]() ![]() ![]() |
exlimdd.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
exlimdd.4 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
exlimdd |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimdd.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | exlimdd.1 |
. . 3
![]() ![]() ![]() ![]() | |
3 | exlimdd.2 |
. . 3
![]() ![]() ![]() ![]() | |
4 | exlimdd.4 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 4 | ex 115 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 2, 3, 5 | exlimd 1597 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 1, 6 | mpd 13 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie2 1494 ax-4 1510 |
This theorem depends on definitions: df-bi 117 df-nf 1461 |
This theorem is referenced by: fvmptdf 5606 ovmpodf 6009 exmidfodomrlemr 7204 exmidfodomrlemrALT 7205 ltexprlemm 7602 dfgrp3mlem 12974 |
Copyright terms: Public domain | W3C validator |