ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2a1i Unicode version

Theorem 2a1i 27
Description: Add two antecedents to a wff. (Contributed by Jeff Hankins, 4-Aug-2009.) (Proof shortened by Wolf Lammen, 23-Jul-2013.)
Hypothesis
Ref Expression
2a1i.1  |-  ch
Assertion
Ref Expression
2a1i  |-  ( ph  ->  ( ps  ->  ch ) )

Proof of Theorem 2a1i
StepHypRef Expression
1 2a1i.1 . . 3  |-  ch
21a1i 9 . 2  |-  ( ph  ->  ch )
32a1d 22 1  |-  ( ph  ->  ( ps  ->  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  equvini  1751  sbcrext  3032  map1  6788  seq3id2  10458  fsum2d  11391  fsumabs  11421  fsumiun  11433  fprod2d  11579  cncfmptc  13341
  Copyright terms: Public domain W3C validator