ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncfmptc Unicode version

Theorem cncfmptc 13376
Description: A constant function is a continuous function on  CC. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 7-Sep-2015.)
Assertion
Ref Expression
cncfmptc  |-  ( ( A  e.  T  /\  S  C_  CC  /\  T  C_  CC )  ->  (
x  e.  S  |->  A )  e.  ( S
-cn-> T ) )
Distinct variable groups:    x, A    x, S    x, T

Proof of Theorem cncfmptc
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpc 991 . 2  |-  ( ( A  e.  T  /\  S  C_  CC  /\  T  C_  CC )  ->  ( S  C_  CC  /\  T  C_  CC ) )
2 simpl1 995 . . . 4  |-  ( ( ( A  e.  T  /\  S  C_  CC  /\  T  C_  CC )  /\  x  e.  S )  ->  A  e.  T )
32fmpttd 5651 . . 3  |-  ( ( A  e.  T  /\  S  C_  CC  /\  T  C_  CC )  ->  (
x  e.  S  |->  A ) : S --> T )
4 1rp 9614 . . . 4  |-  1  e.  RR+
542a1i 27 . . 3  |-  ( ( A  e.  T  /\  S  C_  CC  /\  T  C_  CC )  ->  (
( y  e.  S  /\  z  e.  RR+ )  ->  1  e.  RR+ )
)
6 eqid 2170 . . . . . . . . . 10  |-  ( x  e.  S  |->  A )  =  ( x  e.  S  |->  A )
7 eqidd 2171 . . . . . . . . . 10  |-  ( x  =  y  ->  A  =  A )
8 simprll 532 . . . . . . . . . 10  |-  ( ( ( A  e.  T  /\  S  C_  CC  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  w  e.  S )  /\  z  e.  RR+ ) )  -> 
y  e.  S )
9 simpl1 995 . . . . . . . . . 10  |-  ( ( ( A  e.  T  /\  S  C_  CC  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  w  e.  S )  /\  z  e.  RR+ ) )  ->  A  e.  T )
106, 7, 8, 9fvmptd3 5589 . . . . . . . . 9  |-  ( ( ( A  e.  T  /\  S  C_  CC  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  w  e.  S )  /\  z  e.  RR+ ) )  -> 
( ( x  e.  S  |->  A ) `  y )  =  A )
11 eqidd 2171 . . . . . . . . . 10  |-  ( x  =  w  ->  A  =  A )
12 simprlr 533 . . . . . . . . . 10  |-  ( ( ( A  e.  T  /\  S  C_  CC  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  w  e.  S )  /\  z  e.  RR+ ) )  ->  w  e.  S )
136, 11, 12, 9fvmptd3 5589 . . . . . . . . 9  |-  ( ( ( A  e.  T  /\  S  C_  CC  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  w  e.  S )  /\  z  e.  RR+ ) )  -> 
( ( x  e.  S  |->  A ) `  w )  =  A )
1410, 13oveq12d 5871 . . . . . . . 8  |-  ( ( ( A  e.  T  /\  S  C_  CC  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  w  e.  S )  /\  z  e.  RR+ ) )  -> 
( ( ( x  e.  S  |->  A ) `
 y )  -  ( ( x  e.  S  |->  A ) `  w ) )  =  ( A  -  A
) )
15 simpl3 997 . . . . . . . . . 10  |-  ( ( ( A  e.  T  /\  S  C_  CC  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  w  e.  S )  /\  z  e.  RR+ ) )  ->  T  C_  CC )
1615, 9sseldd 3148 . . . . . . . . 9  |-  ( ( ( A  e.  T  /\  S  C_  CC  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  w  e.  S )  /\  z  e.  RR+ ) )  ->  A  e.  CC )
1716subidd 8218 . . . . . . . 8  |-  ( ( ( A  e.  T  /\  S  C_  CC  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  w  e.  S )  /\  z  e.  RR+ ) )  -> 
( A  -  A
)  =  0 )
1814, 17eqtrd 2203 . . . . . . 7  |-  ( ( ( A  e.  T  /\  S  C_  CC  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  w  e.  S )  /\  z  e.  RR+ ) )  -> 
( ( ( x  e.  S  |->  A ) `
 y )  -  ( ( x  e.  S  |->  A ) `  w ) )  =  0 )
1918abs00bd 11030 . . . . . 6  |-  ( ( ( A  e.  T  /\  S  C_  CC  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  w  e.  S )  /\  z  e.  RR+ ) )  -> 
( abs `  (
( ( x  e.  S  |->  A ) `  y )  -  (
( x  e.  S  |->  A ) `  w
) ) )  =  0 )
20 simprr 527 . . . . . . 7  |-  ( ( ( A  e.  T  /\  S  C_  CC  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  w  e.  S )  /\  z  e.  RR+ ) )  -> 
z  e.  RR+ )
2120rpgt0d 9656 . . . . . 6  |-  ( ( ( A  e.  T  /\  S  C_  CC  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  w  e.  S )  /\  z  e.  RR+ ) )  -> 
0  <  z )
2219, 21eqbrtrd 4011 . . . . 5  |-  ( ( ( A  e.  T  /\  S  C_  CC  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  w  e.  S )  /\  z  e.  RR+ ) )  -> 
( abs `  (
( ( x  e.  S  |->  A ) `  y )  -  (
( x  e.  S  |->  A ) `  w
) ) )  < 
z )
2322a1d 22 . . . 4  |-  ( ( ( A  e.  T  /\  S  C_  CC  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  w  e.  S )  /\  z  e.  RR+ ) )  -> 
( ( abs `  (
y  -  w ) )  <  1  -> 
( abs `  (
( ( x  e.  S  |->  A ) `  y )  -  (
( x  e.  S  |->  A ) `  w
) ) )  < 
z ) )
2423ex 114 . . 3  |-  ( ( A  e.  T  /\  S  C_  CC  /\  T  C_  CC )  ->  (
( ( y  e.  S  /\  w  e.  S )  /\  z  e.  RR+ )  ->  (
( abs `  (
y  -  w ) )  <  1  -> 
( abs `  (
( ( x  e.  S  |->  A ) `  y )  -  (
( x  e.  S  |->  A ) `  w
) ) )  < 
z ) ) )
253, 5, 24elcncf1di 13360 . 2  |-  ( ( A  e.  T  /\  S  C_  CC  /\  T  C_  CC )  ->  (
( S  C_  CC  /\  T  C_  CC )  ->  ( x  e.  S  |->  A )  e.  ( S -cn-> T ) ) )
261, 25mpd 13 1  |-  ( ( A  e.  T  /\  S  C_  CC  /\  T  C_  CC )  ->  (
x  e.  S  |->  A )  e.  ( S
-cn-> T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 973    e. wcel 2141    C_ wss 3121   class class class wbr 3989    |-> cmpt 4050   ` cfv 5198  (class class class)co 5853   CCcc 7772   0cc0 7774   1c1 7775    < clt 7954    - cmin 8090   RR+crp 9610   abscabs 10961   -cn->ccncf 13351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-map 6628  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-n0 9136  df-z 9213  df-uz 9488  df-rp 9611  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-rsqrt 10962  df-abs 10963  df-cncf 13352
This theorem is referenced by:  expcncf  13386  dvidlemap  13454  dvcnp2cntop  13457  dvmulxxbr  13460
  Copyright terms: Public domain W3C validator