ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncfmptc Unicode version

Theorem cncfmptc 12942
Description: A constant function is a continuous function on  CC. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 7-Sep-2015.)
Assertion
Ref Expression
cncfmptc  |-  ( ( A  e.  T  /\  S  C_  CC  /\  T  C_  CC )  ->  (
x  e.  S  |->  A )  e.  ( S
-cn-> T ) )
Distinct variable groups:    x, A    x, S    x, T

Proof of Theorem cncfmptc
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpc 981 . 2  |-  ( ( A  e.  T  /\  S  C_  CC  /\  T  C_  CC )  ->  ( S  C_  CC  /\  T  C_  CC ) )
2 simpl1 985 . . . 4  |-  ( ( ( A  e.  T  /\  S  C_  CC  /\  T  C_  CC )  /\  x  e.  S )  ->  A  e.  T )
32fmpttd 5619 . . 3  |-  ( ( A  e.  T  /\  S  C_  CC  /\  T  C_  CC )  ->  (
x  e.  S  |->  A ) : S --> T )
4 1rp 9546 . . . 4  |-  1  e.  RR+
542a1i 27 . . 3  |-  ( ( A  e.  T  /\  S  C_  CC  /\  T  C_  CC )  ->  (
( y  e.  S  /\  z  e.  RR+ )  ->  1  e.  RR+ )
)
6 eqid 2157 . . . . . . . . . 10  |-  ( x  e.  S  |->  A )  =  ( x  e.  S  |->  A )
7 eqidd 2158 . . . . . . . . . 10  |-  ( x  =  y  ->  A  =  A )
8 simprll 527 . . . . . . . . . 10  |-  ( ( ( A  e.  T  /\  S  C_  CC  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  w  e.  S )  /\  z  e.  RR+ ) )  -> 
y  e.  S )
9 simpl1 985 . . . . . . . . . 10  |-  ( ( ( A  e.  T  /\  S  C_  CC  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  w  e.  S )  /\  z  e.  RR+ ) )  ->  A  e.  T )
106, 7, 8, 9fvmptd3 5558 . . . . . . . . 9  |-  ( ( ( A  e.  T  /\  S  C_  CC  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  w  e.  S )  /\  z  e.  RR+ ) )  -> 
( ( x  e.  S  |->  A ) `  y )  =  A )
11 eqidd 2158 . . . . . . . . . 10  |-  ( x  =  w  ->  A  =  A )
12 simprlr 528 . . . . . . . . . 10  |-  ( ( ( A  e.  T  /\  S  C_  CC  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  w  e.  S )  /\  z  e.  RR+ ) )  ->  w  e.  S )
136, 11, 12, 9fvmptd3 5558 . . . . . . . . 9  |-  ( ( ( A  e.  T  /\  S  C_  CC  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  w  e.  S )  /\  z  e.  RR+ ) )  -> 
( ( x  e.  S  |->  A ) `  w )  =  A )
1410, 13oveq12d 5836 . . . . . . . 8  |-  ( ( ( A  e.  T  /\  S  C_  CC  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  w  e.  S )  /\  z  e.  RR+ ) )  -> 
( ( ( x  e.  S  |->  A ) `
 y )  -  ( ( x  e.  S  |->  A ) `  w ) )  =  ( A  -  A
) )
15 simpl3 987 . . . . . . . . . 10  |-  ( ( ( A  e.  T  /\  S  C_  CC  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  w  e.  S )  /\  z  e.  RR+ ) )  ->  T  C_  CC )
1615, 9sseldd 3129 . . . . . . . . 9  |-  ( ( ( A  e.  T  /\  S  C_  CC  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  w  e.  S )  /\  z  e.  RR+ ) )  ->  A  e.  CC )
1716subidd 8157 . . . . . . . 8  |-  ( ( ( A  e.  T  /\  S  C_  CC  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  w  e.  S )  /\  z  e.  RR+ ) )  -> 
( A  -  A
)  =  0 )
1814, 17eqtrd 2190 . . . . . . 7  |-  ( ( ( A  e.  T  /\  S  C_  CC  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  w  e.  S )  /\  z  e.  RR+ ) )  -> 
( ( ( x  e.  S  |->  A ) `
 y )  -  ( ( x  e.  S  |->  A ) `  w ) )  =  0 )
1918abs00bd 10948 . . . . . 6  |-  ( ( ( A  e.  T  /\  S  C_  CC  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  w  e.  S )  /\  z  e.  RR+ ) )  -> 
( abs `  (
( ( x  e.  S  |->  A ) `  y )  -  (
( x  e.  S  |->  A ) `  w
) ) )  =  0 )
20 simprr 522 . . . . . . 7  |-  ( ( ( A  e.  T  /\  S  C_  CC  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  w  e.  S )  /\  z  e.  RR+ ) )  -> 
z  e.  RR+ )
2120rpgt0d 9588 . . . . . 6  |-  ( ( ( A  e.  T  /\  S  C_  CC  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  w  e.  S )  /\  z  e.  RR+ ) )  -> 
0  <  z )
2219, 21eqbrtrd 3986 . . . . 5  |-  ( ( ( A  e.  T  /\  S  C_  CC  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  w  e.  S )  /\  z  e.  RR+ ) )  -> 
( abs `  (
( ( x  e.  S  |->  A ) `  y )  -  (
( x  e.  S  |->  A ) `  w
) ) )  < 
z )
2322a1d 22 . . . 4  |-  ( ( ( A  e.  T  /\  S  C_  CC  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  w  e.  S )  /\  z  e.  RR+ ) )  -> 
( ( abs `  (
y  -  w ) )  <  1  -> 
( abs `  (
( ( x  e.  S  |->  A ) `  y )  -  (
( x  e.  S  |->  A ) `  w
) ) )  < 
z ) )
2423ex 114 . . 3  |-  ( ( A  e.  T  /\  S  C_  CC  /\  T  C_  CC )  ->  (
( ( y  e.  S  /\  w  e.  S )  /\  z  e.  RR+ )  ->  (
( abs `  (
y  -  w ) )  <  1  -> 
( abs `  (
( ( x  e.  S  |->  A ) `  y )  -  (
( x  e.  S  |->  A ) `  w
) ) )  < 
z ) ) )
253, 5, 24elcncf1di 12926 . 2  |-  ( ( A  e.  T  /\  S  C_  CC  /\  T  C_  CC )  ->  (
( S  C_  CC  /\  T  C_  CC )  ->  ( x  e.  S  |->  A )  e.  ( S -cn-> T ) ) )
261, 25mpd 13 1  |-  ( ( A  e.  T  /\  S  C_  CC  /\  T  C_  CC )  ->  (
x  e.  S  |->  A )  e.  ( S
-cn-> T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 963    e. wcel 2128    C_ wss 3102   class class class wbr 3965    |-> cmpt 4025   ` cfv 5167  (class class class)co 5818   CCcc 7713   0cc0 7715   1c1 7716    < clt 7895    - cmin 8029   RR+crp 9542   abscabs 10879   -cn->ccncf 12917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-iinf 4545  ax-cnex 7806  ax-resscn 7807  ax-1cn 7808  ax-1re 7809  ax-icn 7810  ax-addcl 7811  ax-addrcl 7812  ax-mulcl 7813  ax-mulrcl 7814  ax-addcom 7815  ax-mulcom 7816  ax-addass 7817  ax-mulass 7818  ax-distr 7819  ax-i2m1 7820  ax-0lt1 7821  ax-1rid 7822  ax-0id 7823  ax-rnegex 7824  ax-precex 7825  ax-cnre 7826  ax-pre-ltirr 7827  ax-pre-ltwlin 7828  ax-pre-lttrn 7829  ax-pre-apti 7830  ax-pre-ltadd 7831  ax-pre-mulgt0 7832  ax-pre-mulext 7833
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4252  df-po 4255  df-iso 4256  df-iord 4325  df-on 4327  df-ilim 4328  df-suc 4330  df-iom 4548  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174  df-fv 5175  df-riota 5774  df-ov 5821  df-oprab 5822  df-mpo 5823  df-1st 6082  df-2nd 6083  df-recs 6246  df-frec 6332  df-map 6588  df-pnf 7897  df-mnf 7898  df-xr 7899  df-ltxr 7900  df-le 7901  df-sub 8031  df-neg 8032  df-reap 8433  df-ap 8440  df-div 8529  df-inn 8817  df-2 8875  df-n0 9074  df-z 9151  df-uz 9423  df-rp 9543  df-seqfrec 10327  df-exp 10401  df-cj 10724  df-rsqrt 10880  df-abs 10881  df-cncf 12918
This theorem is referenced by:  expcncf  12952  dvidlemap  13020  dvcnp2cntop  13023  dvmulxxbr  13026
  Copyright terms: Public domain W3C validator