ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  map1 Unicode version

Theorem map1 6788
Description: Set exponentiation: ordinal 1 to any set is equinumerous to ordinal 1. Exercise 4.42(b) of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.)
Assertion
Ref Expression
map1  |-  ( A  e.  V  ->  ( 1o  ^m  A )  ~~  1o )

Proof of Theorem map1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnmap 6631 . . 3  |-  ^m  Fn  ( _V  X.  _V )
2 1oex 6401 . . 3  |-  1o  e.  _V
3 elex 2741 . . 3  |-  ( A  e.  V  ->  A  e.  _V )
4 fnovex 5884 . . 3  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  1o  e.  _V  /\  A  e. 
_V )  ->  ( 1o  ^m  A )  e. 
_V )
51, 2, 3, 4mp3an12i 1336 . 2  |-  ( A  e.  V  ->  ( 1o  ^m  A )  e. 
_V )
62a1i 9 . 2  |-  ( A  e.  V  ->  1o  e.  _V )
7 0ex 4114 . . 3  |-  (/)  e.  _V
872a1i 27 . 2  |-  ( A  e.  V  ->  (
x  e.  ( 1o 
^m  A )  ->  (/) 
e.  _V ) )
9 p0ex 4172 . . . 4  |-  { (/) }  e.  _V
10 xpexg 4723 . . . 4  |-  ( ( A  e.  V  /\  {
(/) }  e.  _V )  ->  ( A  X.  { (/) } )  e. 
_V )
119, 10mpan2 423 . . 3  |-  ( A  e.  V  ->  ( A  X.  { (/) } )  e.  _V )
1211a1d 22 . 2  |-  ( A  e.  V  ->  (
y  e.  1o  ->  ( A  X.  { (/) } )  e.  _V )
)
13 el1o 6414 . . . . 5  |-  ( y  e.  1o  <->  y  =  (/) )
1413a1i 9 . . . 4  |-  ( A  e.  V  ->  (
y  e.  1o  <->  y  =  (/) ) )
15 df1o2 6406 . . . . . . . 8  |-  1o  =  { (/) }
1615oveq1i 5861 . . . . . . 7  |-  ( 1o 
^m  A )  =  ( { (/) }  ^m  A )
1716eleq2i 2237 . . . . . 6  |-  ( x  e.  ( 1o  ^m  A )  <->  x  e.  ( { (/) }  ^m  A
) )
18 elmapg 6637 . . . . . . 7  |-  ( ( { (/) }  e.  _V  /\  A  e.  V )  ->  ( x  e.  ( { (/) }  ^m  A )  <->  x : A
--> { (/) } ) )
199, 18mpan 422 . . . . . 6  |-  ( A  e.  V  ->  (
x  e.  ( {
(/) }  ^m  A )  <-> 
x : A --> { (/) } ) )
2017, 19syl5bb 191 . . . . 5  |-  ( A  e.  V  ->  (
x  e.  ( 1o 
^m  A )  <->  x : A
--> { (/) } ) )
217fconst2 5711 . . . . 5  |-  ( x : A --> { (/) }  <-> 
x  =  ( A  X.  { (/) } ) )
2220, 21bitr2di 196 . . . 4  |-  ( A  e.  V  ->  (
x  =  ( A  X.  { (/) } )  <-> 
x  e.  ( 1o 
^m  A ) ) )
2314, 22anbi12d 470 . . 3  |-  ( A  e.  V  ->  (
( y  e.  1o  /\  x  =  ( A  X.  { (/) } ) )  <->  ( y  =  (/)  /\  x  e.  ( 1o  ^m  A ) ) ) )
24 ancom 264 . . 3  |-  ( ( y  =  (/)  /\  x  e.  ( 1o  ^m  A
) )  <->  ( x  e.  ( 1o  ^m  A
)  /\  y  =  (/) ) )
2523, 24bitr2di 196 . 2  |-  ( A  e.  V  ->  (
( x  e.  ( 1o  ^m  A )  /\  y  =  (/) ) 
<->  ( y  e.  1o  /\  x  =  ( A  X.  { (/) } ) ) ) )
265, 6, 8, 12, 25en2d 6744 1  |-  ( A  e.  V  ->  ( 1o  ^m  A )  ~~  1o )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   _Vcvv 2730   (/)c0 3414   {csn 3581   class class class wbr 3987    X. cxp 4607    Fn wfn 5191   -->wf 5192  (class class class)co 5851   1oc1o 6386    ^m cmap 6624    ~~ cen 6714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-iord 4349  df-on 4351  df-suc 4354  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-1o 6393  df-map 6626  df-en 6717
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator