Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > map1 | Unicode version |
Description: Set exponentiation: ordinal 1 to any set is equinumerous to ordinal 1. Exercise 4.42(b) of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.) |
Ref | Expression |
---|---|
map1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnmap 6633 | . . 3 | |
2 | 1oex 6403 | . . 3 | |
3 | elex 2741 | . . 3 | |
4 | fnovex 5886 | . . 3 | |
5 | 1, 2, 3, 4 | mp3an12i 1336 | . 2 |
6 | 2 | a1i 9 | . 2 |
7 | 0ex 4116 | . . 3 | |
8 | 7 | 2a1i 27 | . 2 |
9 | p0ex 4174 | . . . 4 | |
10 | xpexg 4725 | . . . 4 | |
11 | 9, 10 | mpan2 423 | . . 3 |
12 | 11 | a1d 22 | . 2 |
13 | el1o 6416 | . . . . 5 | |
14 | 13 | a1i 9 | . . . 4 |
15 | df1o2 6408 | . . . . . . . 8 | |
16 | 15 | oveq1i 5863 | . . . . . . 7 |
17 | 16 | eleq2i 2237 | . . . . . 6 |
18 | elmapg 6639 | . . . . . . 7 | |
19 | 9, 18 | mpan 422 | . . . . . 6 |
20 | 17, 19 | syl5bb 191 | . . . . 5 |
21 | 7 | fconst2 5713 | . . . . 5 |
22 | 20, 21 | bitr2di 196 | . . . 4 |
23 | 14, 22 | anbi12d 470 | . . 3 |
24 | ancom 264 | . . 3 | |
25 | 23, 24 | bitr2di 196 | . 2 |
26 | 5, 6, 8, 12, 25 | en2d 6746 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 cvv 2730 c0 3414 csn 3583 class class class wbr 3989 cxp 4609 wfn 5193 wf 5194 (class class class)co 5853 c1o 6388 cmap 6626 cen 6716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-1o 6395 df-map 6628 df-en 6719 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |