ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  map1 Unicode version

Theorem map1 6965
Description: Set exponentiation: ordinal 1 to any set is equinumerous to ordinal 1. Exercise 4.42(b) of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.)
Assertion
Ref Expression
map1  |-  ( A  e.  V  ->  ( 1o  ^m  A )  ~~  1o )

Proof of Theorem map1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnmap 6802 . . 3  |-  ^m  Fn  ( _V  X.  _V )
2 1oex 6570 . . 3  |-  1o  e.  _V
3 elex 2811 . . 3  |-  ( A  e.  V  ->  A  e.  _V )
4 fnovex 6034 . . 3  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  1o  e.  _V  /\  A  e. 
_V )  ->  ( 1o  ^m  A )  e. 
_V )
51, 2, 3, 4mp3an12i 1375 . 2  |-  ( A  e.  V  ->  ( 1o  ^m  A )  e. 
_V )
62a1i 9 . 2  |-  ( A  e.  V  ->  1o  e.  _V )
7 0ex 4211 . . 3  |-  (/)  e.  _V
872a1i 27 . 2  |-  ( A  e.  V  ->  (
x  e.  ( 1o 
^m  A )  ->  (/) 
e.  _V ) )
9 p0ex 4272 . . . 4  |-  { (/) }  e.  _V
10 xpexg 4833 . . . 4  |-  ( ( A  e.  V  /\  {
(/) }  e.  _V )  ->  ( A  X.  { (/) } )  e. 
_V )
119, 10mpan2 425 . . 3  |-  ( A  e.  V  ->  ( A  X.  { (/) } )  e.  _V )
1211a1d 22 . 2  |-  ( A  e.  V  ->  (
y  e.  1o  ->  ( A  X.  { (/) } )  e.  _V )
)
13 el1o 6583 . . . . 5  |-  ( y  e.  1o  <->  y  =  (/) )
1413a1i 9 . . . 4  |-  ( A  e.  V  ->  (
y  e.  1o  <->  y  =  (/) ) )
15 df1o2 6575 . . . . . . . 8  |-  1o  =  { (/) }
1615oveq1i 6011 . . . . . . 7  |-  ( 1o 
^m  A )  =  ( { (/) }  ^m  A )
1716eleq2i 2296 . . . . . 6  |-  ( x  e.  ( 1o  ^m  A )  <->  x  e.  ( { (/) }  ^m  A
) )
18 elmapg 6808 . . . . . . 7  |-  ( ( { (/) }  e.  _V  /\  A  e.  V )  ->  ( x  e.  ( { (/) }  ^m  A )  <->  x : A
--> { (/) } ) )
199, 18mpan 424 . . . . . 6  |-  ( A  e.  V  ->  (
x  e.  ( {
(/) }  ^m  A )  <-> 
x : A --> { (/) } ) )
2017, 19bitrid 192 . . . . 5  |-  ( A  e.  V  ->  (
x  e.  ( 1o 
^m  A )  <->  x : A
--> { (/) } ) )
217fconst2 5856 . . . . 5  |-  ( x : A --> { (/) }  <-> 
x  =  ( A  X.  { (/) } ) )
2220, 21bitr2di 197 . . . 4  |-  ( A  e.  V  ->  (
x  =  ( A  X.  { (/) } )  <-> 
x  e.  ( 1o 
^m  A ) ) )
2314, 22anbi12d 473 . . 3  |-  ( A  e.  V  ->  (
( y  e.  1o  /\  x  =  ( A  X.  { (/) } ) )  <->  ( y  =  (/)  /\  x  e.  ( 1o  ^m  A ) ) ) )
24 ancom 266 . . 3  |-  ( ( y  =  (/)  /\  x  e.  ( 1o  ^m  A
) )  <->  ( x  e.  ( 1o  ^m  A
)  /\  y  =  (/) ) )
2523, 24bitr2di 197 . 2  |-  ( A  e.  V  ->  (
( x  e.  ( 1o  ^m  A )  /\  y  =  (/) ) 
<->  ( y  e.  1o  /\  x  =  ( A  X.  { (/) } ) ) ) )
265, 6, 8, 12, 25en2d 6919 1  |-  ( A  e.  V  ->  ( 1o  ^m  A )  ~~  1o )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   _Vcvv 2799   (/)c0 3491   {csn 3666   class class class wbr 4083    X. cxp 4717    Fn wfn 5313   -->wf 5314  (class class class)co 6001   1oc1o 6555    ^m cmap 6795    ~~ cen 6885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-1o 6562  df-map 6797  df-en 6888
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator