| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > map1 | Unicode version | ||
| Description: Set exponentiation: ordinal 1 to any set is equinumerous to ordinal 1. Exercise 4.42(b) of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.) |
| Ref | Expression |
|---|---|
| map1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnmap 6744 |
. . 3
| |
| 2 | 1oex 6512 |
. . 3
| |
| 3 | elex 2783 |
. . 3
| |
| 4 | fnovex 5979 |
. . 3
| |
| 5 | 1, 2, 3, 4 | mp3an12i 1354 |
. 2
|
| 6 | 2 | a1i 9 |
. 2
|
| 7 | 0ex 4172 |
. . 3
| |
| 8 | 7 | 2a1i 27 |
. 2
|
| 9 | p0ex 4233 |
. . . 4
| |
| 10 | xpexg 4790 |
. . . 4
| |
| 11 | 9, 10 | mpan2 425 |
. . 3
|
| 12 | 11 | a1d 22 |
. 2
|
| 13 | el1o 6525 |
. . . . 5
| |
| 14 | 13 | a1i 9 |
. . . 4
|
| 15 | df1o2 6517 |
. . . . . . . 8
| |
| 16 | 15 | oveq1i 5956 |
. . . . . . 7
|
| 17 | 16 | eleq2i 2272 |
. . . . . 6
|
| 18 | elmapg 6750 |
. . . . . . 7
| |
| 19 | 9, 18 | mpan 424 |
. . . . . 6
|
| 20 | 17, 19 | bitrid 192 |
. . . . 5
|
| 21 | 7 | fconst2 5803 |
. . . . 5
|
| 22 | 20, 21 | bitr2di 197 |
. . . 4
|
| 23 | 14, 22 | anbi12d 473 |
. . 3
|
| 24 | ancom 266 |
. . 3
| |
| 25 | 23, 24 | bitr2di 197 |
. 2
|
| 26 | 5, 6, 8, 12, 25 | en2d 6861 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-id 4341 df-iord 4414 df-on 4416 df-suc 4419 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-1o 6504 df-map 6739 df-en 6830 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |