ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  map1 Unicode version

Theorem map1 6928
Description: Set exponentiation: ordinal 1 to any set is equinumerous to ordinal 1. Exercise 4.42(b) of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.)
Assertion
Ref Expression
map1  |-  ( A  e.  V  ->  ( 1o  ^m  A )  ~~  1o )

Proof of Theorem map1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnmap 6765 . . 3  |-  ^m  Fn  ( _V  X.  _V )
2 1oex 6533 . . 3  |-  1o  e.  _V
3 elex 2788 . . 3  |-  ( A  e.  V  ->  A  e.  _V )
4 fnovex 6000 . . 3  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  1o  e.  _V  /\  A  e. 
_V )  ->  ( 1o  ^m  A )  e. 
_V )
51, 2, 3, 4mp3an12i 1354 . 2  |-  ( A  e.  V  ->  ( 1o  ^m  A )  e. 
_V )
62a1i 9 . 2  |-  ( A  e.  V  ->  1o  e.  _V )
7 0ex 4187 . . 3  |-  (/)  e.  _V
872a1i 27 . 2  |-  ( A  e.  V  ->  (
x  e.  ( 1o 
^m  A )  ->  (/) 
e.  _V ) )
9 p0ex 4248 . . . 4  |-  { (/) }  e.  _V
10 xpexg 4807 . . . 4  |-  ( ( A  e.  V  /\  {
(/) }  e.  _V )  ->  ( A  X.  { (/) } )  e. 
_V )
119, 10mpan2 425 . . 3  |-  ( A  e.  V  ->  ( A  X.  { (/) } )  e.  _V )
1211a1d 22 . 2  |-  ( A  e.  V  ->  (
y  e.  1o  ->  ( A  X.  { (/) } )  e.  _V )
)
13 el1o 6546 . . . . 5  |-  ( y  e.  1o  <->  y  =  (/) )
1413a1i 9 . . . 4  |-  ( A  e.  V  ->  (
y  e.  1o  <->  y  =  (/) ) )
15 df1o2 6538 . . . . . . . 8  |-  1o  =  { (/) }
1615oveq1i 5977 . . . . . . 7  |-  ( 1o 
^m  A )  =  ( { (/) }  ^m  A )
1716eleq2i 2274 . . . . . 6  |-  ( x  e.  ( 1o  ^m  A )  <->  x  e.  ( { (/) }  ^m  A
) )
18 elmapg 6771 . . . . . . 7  |-  ( ( { (/) }  e.  _V  /\  A  e.  V )  ->  ( x  e.  ( { (/) }  ^m  A )  <->  x : A
--> { (/) } ) )
199, 18mpan 424 . . . . . 6  |-  ( A  e.  V  ->  (
x  e.  ( {
(/) }  ^m  A )  <-> 
x : A --> { (/) } ) )
2017, 19bitrid 192 . . . . 5  |-  ( A  e.  V  ->  (
x  e.  ( 1o 
^m  A )  <->  x : A
--> { (/) } ) )
217fconst2 5824 . . . . 5  |-  ( x : A --> { (/) }  <-> 
x  =  ( A  X.  { (/) } ) )
2220, 21bitr2di 197 . . . 4  |-  ( A  e.  V  ->  (
x  =  ( A  X.  { (/) } )  <-> 
x  e.  ( 1o 
^m  A ) ) )
2314, 22anbi12d 473 . . 3  |-  ( A  e.  V  ->  (
( y  e.  1o  /\  x  =  ( A  X.  { (/) } ) )  <->  ( y  =  (/)  /\  x  e.  ( 1o  ^m  A ) ) ) )
24 ancom 266 . . 3  |-  ( ( y  =  (/)  /\  x  e.  ( 1o  ^m  A
) )  <->  ( x  e.  ( 1o  ^m  A
)  /\  y  =  (/) ) )
2523, 24bitr2di 197 . 2  |-  ( A  e.  V  ->  (
( x  e.  ( 1o  ^m  A )  /\  y  =  (/) ) 
<->  ( y  e.  1o  /\  x  =  ( A  X.  { (/) } ) ) ) )
265, 6, 8, 12, 25en2d 6882 1  |-  ( A  e.  V  ->  ( 1o  ^m  A )  ~~  1o )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   _Vcvv 2776   (/)c0 3468   {csn 3643   class class class wbr 4059    X. cxp 4691    Fn wfn 5285   -->wf 5286  (class class class)co 5967   1oc1o 6518    ^m cmap 6758    ~~ cen 6848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-1o 6525  df-map 6760  df-en 6851
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator