| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fsum2d | Unicode version | ||
| Description: Write a double sum as a
sum over a two-dimensional region. Note that
|
| Ref | Expression |
|---|---|
| fsum2d.1 |
|
| fsum2d.2 |
|
| fsum2d.3 |
|
| fsum2d.4 |
|
| Ref | Expression |
|---|---|
| fsum2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3204 |
. 2
| |
| 2 | fsum2d.2 |
. . 3
| |
| 3 | sseq1 3207 |
. . . . . 6
| |
| 4 | sumeq1 11537 |
. . . . . . 7
| |
| 5 | iuneq1 3930 |
. . . . . . . 8
| |
| 6 | 5 | sumeq1d 11548 |
. . . . . . 7
|
| 7 | 4, 6 | eqeq12d 2211 |
. . . . . 6
|
| 8 | 3, 7 | imbi12d 234 |
. . . . 5
|
| 9 | 8 | imbi2d 230 |
. . . 4
|
| 10 | sseq1 3207 |
. . . . . 6
| |
| 11 | sumeq1 11537 |
. . . . . . 7
| |
| 12 | iuneq1 3930 |
. . . . . . . 8
| |
| 13 | 12 | sumeq1d 11548 |
. . . . . . 7
|
| 14 | 11, 13 | eqeq12d 2211 |
. . . . . 6
|
| 15 | 10, 14 | imbi12d 234 |
. . . . 5
|
| 16 | 15 | imbi2d 230 |
. . . 4
|
| 17 | sseq1 3207 |
. . . . . 6
| |
| 18 | sumeq1 11537 |
. . . . . . 7
| |
| 19 | iuneq1 3930 |
. . . . . . . 8
| |
| 20 | 19 | sumeq1d 11548 |
. . . . . . 7
|
| 21 | 18, 20 | eqeq12d 2211 |
. . . . . 6
|
| 22 | 17, 21 | imbi12d 234 |
. . . . 5
|
| 23 | 22 | imbi2d 230 |
. . . 4
|
| 24 | sseq1 3207 |
. . . . . 6
| |
| 25 | sumeq1 11537 |
. . . . . . 7
| |
| 26 | iuneq1 3930 |
. . . . . . . 8
| |
| 27 | 26 | sumeq1d 11548 |
. . . . . . 7
|
| 28 | 25, 27 | eqeq12d 2211 |
. . . . . 6
|
| 29 | 24, 28 | imbi12d 234 |
. . . . 5
|
| 30 | 29 | imbi2d 230 |
. . . 4
|
| 31 | sum0 11570 |
. . . . . 6
| |
| 32 | 0iun 3975 |
. . . . . . 7
| |
| 33 | 32 | sumeq1i 11545 |
. . . . . 6
|
| 34 | sum0 11570 |
. . . . . 6
| |
| 35 | 31, 33, 34 | 3eqtr4ri 2228 |
. . . . 5
|
| 36 | 35 | 2a1i 27 |
. . . 4
|
| 37 | ssun1 3327 |
. . . . . . . . 9
| |
| 38 | sstr 3192 |
. . . . . . . . 9
| |
| 39 | 37, 38 | mpan 424 |
. . . . . . . 8
|
| 40 | 39 | imim1i 60 |
. . . . . . 7
|
| 41 | fsum2d.1 |
. . . . . . . . . 10
| |
| 42 | 2 | ad2antrr 488 |
. . . . . . . . . 10
|
| 43 | simpll 527 |
. . . . . . . . . . 11
| |
| 44 | fsum2d.3 |
. . . . . . . . . . 11
| |
| 45 | 43, 44 | sylan 283 |
. . . . . . . . . 10
|
| 46 | fsum2d.4 |
. . . . . . . . . . 11
| |
| 47 | 43, 46 | sylan 283 |
. . . . . . . . . 10
|
| 48 | simplrr 536 |
. . . . . . . . . 10
| |
| 49 | simpr 110 |
. . . . . . . . . 10
| |
| 50 | simplrl 535 |
. . . . . . . . . 10
| |
| 51 | biid 171 |
. . . . . . . . . 10
| |
| 52 | 41, 42, 45, 47, 48, 49, 50, 51 | fsum2dlemstep 11616 |
. . . . . . . . 9
|
| 53 | 52 | exp31 364 |
. . . . . . . 8
|
| 54 | 53 | a2d 26 |
. . . . . . 7
|
| 55 | 40, 54 | syl5 32 |
. . . . . 6
|
| 56 | 55 | expcom 116 |
. . . . 5
|
| 57 | 56 | a2d 26 |
. . . 4
|
| 58 | 9, 16, 23, 30, 36, 57 | findcard2s 6960 |
. . 3
|
| 59 | 2, 58 | mpcom 36 |
. 2
|
| 60 | 1, 59 | mpi 15 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 ax-caucvg 8016 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-disj 4012 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-frec 6458 df-1o 6483 df-oadd 6487 df-er 6601 df-en 6809 df-dom 6810 df-fin 6811 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-n0 9267 df-z 9344 df-uz 9619 df-q 9711 df-rp 9746 df-fz 10101 df-fzo 10235 df-seqfrec 10557 df-exp 10648 df-ihash 10885 df-cj 11024 df-re 11025 df-im 11026 df-rsqrt 11180 df-abs 11181 df-clim 11461 df-sumdc 11536 |
| This theorem is referenced by: fsumxp 11618 fisumcom2 11620 |
| Copyright terms: Public domain | W3C validator |