Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fsum2d | Unicode version |
Description: Write a double sum as a sum over a two-dimensional region. Note that is a function of . (Contributed by Mario Carneiro, 27-Apr-2014.) |
Ref | Expression |
---|---|
fsum2d.1 | |
fsum2d.2 | |
fsum2d.3 | |
fsum2d.4 |
Ref | Expression |
---|---|
fsum2d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3144 | . 2 | |
2 | fsum2d.2 | . . 3 | |
3 | sseq1 3147 | . . . . . 6 | |
4 | sumeq1 11229 | . . . . . . 7 | |
5 | iuneq1 3858 | . . . . . . . 8 | |
6 | 5 | sumeq1d 11240 | . . . . . . 7 |
7 | 4, 6 | eqeq12d 2169 | . . . . . 6 |
8 | 3, 7 | imbi12d 233 | . . . . 5 |
9 | 8 | imbi2d 229 | . . . 4 |
10 | sseq1 3147 | . . . . . 6 | |
11 | sumeq1 11229 | . . . . . . 7 | |
12 | iuneq1 3858 | . . . . . . . 8 | |
13 | 12 | sumeq1d 11240 | . . . . . . 7 |
14 | 11, 13 | eqeq12d 2169 | . . . . . 6 |
15 | 10, 14 | imbi12d 233 | . . . . 5 |
16 | 15 | imbi2d 229 | . . . 4 |
17 | sseq1 3147 | . . . . . 6 | |
18 | sumeq1 11229 | . . . . . . 7 | |
19 | iuneq1 3858 | . . . . . . . 8 | |
20 | 19 | sumeq1d 11240 | . . . . . . 7 |
21 | 18, 20 | eqeq12d 2169 | . . . . . 6 |
22 | 17, 21 | imbi12d 233 | . . . . 5 |
23 | 22 | imbi2d 229 | . . . 4 |
24 | sseq1 3147 | . . . . . 6 | |
25 | sumeq1 11229 | . . . . . . 7 | |
26 | iuneq1 3858 | . . . . . . . 8 | |
27 | 26 | sumeq1d 11240 | . . . . . . 7 |
28 | 25, 27 | eqeq12d 2169 | . . . . . 6 |
29 | 24, 28 | imbi12d 233 | . . . . 5 |
30 | 29 | imbi2d 229 | . . . 4 |
31 | sum0 11262 | . . . . . 6 | |
32 | 0iun 3902 | . . . . . . 7 | |
33 | 32 | sumeq1i 11237 | . . . . . 6 |
34 | sum0 11262 | . . . . . 6 | |
35 | 31, 33, 34 | 3eqtr4ri 2186 | . . . . 5 |
36 | 35 | 2a1i 27 | . . . 4 |
37 | ssun1 3266 | . . . . . . . . 9 | |
38 | sstr 3132 | . . . . . . . . 9 | |
39 | 37, 38 | mpan 421 | . . . . . . . 8 |
40 | 39 | imim1i 60 | . . . . . . 7 |
41 | fsum2d.1 | . . . . . . . . . 10 | |
42 | 2 | ad2antrr 480 | . . . . . . . . . 10 |
43 | simpll 519 | . . . . . . . . . . 11 | |
44 | fsum2d.3 | . . . . . . . . . . 11 | |
45 | 43, 44 | sylan 281 | . . . . . . . . . 10 |
46 | fsum2d.4 | . . . . . . . . . . 11 | |
47 | 43, 46 | sylan 281 | . . . . . . . . . 10 |
48 | simplrr 526 | . . . . . . . . . 10 | |
49 | simpr 109 | . . . . . . . . . 10 | |
50 | simplrl 525 | . . . . . . . . . 10 | |
51 | biid 170 | . . . . . . . . . 10 | |
52 | 41, 42, 45, 47, 48, 49, 50, 51 | fsum2dlemstep 11308 | . . . . . . . . 9 |
53 | 52 | exp31 362 | . . . . . . . 8 |
54 | 53 | a2d 26 | . . . . . . 7 |
55 | 40, 54 | syl5 32 | . . . . . 6 |
56 | 55 | expcom 115 | . . . . 5 |
57 | 56 | a2d 26 | . . . 4 |
58 | 9, 16, 23, 30, 36, 57 | findcard2s 6824 | . . 3 |
59 | 2, 58 | mpcom 36 | . 2 |
60 | 1, 59 | mpi 15 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wceq 1332 wcel 2125 cun 3096 wss 3098 c0 3390 csn 3556 cop 3559 ciun 3845 cxp 4577 cfn 6674 cc 7709 cc0 7711 csu 11227 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-coll 4075 ax-sep 4078 ax-nul 4086 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-iinf 4541 ax-cnex 7802 ax-resscn 7803 ax-1cn 7804 ax-1re 7805 ax-icn 7806 ax-addcl 7807 ax-addrcl 7808 ax-mulcl 7809 ax-mulrcl 7810 ax-addcom 7811 ax-mulcom 7812 ax-addass 7813 ax-mulass 7814 ax-distr 7815 ax-i2m1 7816 ax-0lt1 7817 ax-1rid 7818 ax-0id 7819 ax-rnegex 7820 ax-precex 7821 ax-cnre 7822 ax-pre-ltirr 7823 ax-pre-ltwlin 7824 ax-pre-lttrn 7825 ax-pre-apti 7826 ax-pre-ltadd 7827 ax-pre-mulgt0 7828 ax-pre-mulext 7829 ax-arch 7830 ax-caucvg 7831 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-nel 2420 df-ral 2437 df-rex 2438 df-reu 2439 df-rmo 2440 df-rab 2441 df-v 2711 df-sbc 2934 df-csb 3028 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-nul 3391 df-if 3502 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-iun 3847 df-disj 3939 df-br 3962 df-opab 4022 df-mpt 4023 df-tr 4059 df-id 4248 df-po 4251 df-iso 4252 df-iord 4321 df-on 4323 df-ilim 4324 df-suc 4326 df-iom 4544 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-f1 5168 df-fo 5169 df-f1o 5170 df-fv 5171 df-isom 5172 df-riota 5770 df-ov 5817 df-oprab 5818 df-mpo 5819 df-1st 6078 df-2nd 6079 df-recs 6242 df-irdg 6307 df-frec 6328 df-1o 6353 df-oadd 6357 df-er 6469 df-en 6675 df-dom 6676 df-fin 6677 df-pnf 7893 df-mnf 7894 df-xr 7895 df-ltxr 7896 df-le 7897 df-sub 8027 df-neg 8028 df-reap 8429 df-ap 8436 df-div 8525 df-inn 8813 df-2 8871 df-3 8872 df-4 8873 df-n0 9070 df-z 9147 df-uz 9419 df-q 9507 df-rp 9539 df-fz 9891 df-fzo 10020 df-seqfrec 10323 df-exp 10397 df-ihash 10627 df-cj 10719 df-re 10720 df-im 10721 df-rsqrt 10875 df-abs 10876 df-clim 11153 df-sumdc 11228 |
This theorem is referenced by: fsumxp 11310 fisumcom2 11312 |
Copyright terms: Public domain | W3C validator |