ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsum2d Unicode version

Theorem fsum2d 11861
Description: Write a double sum as a sum over a two-dimensional region. Note that  B ( j ) is a function of  j. (Contributed by Mario Carneiro, 27-Apr-2014.)
Hypotheses
Ref Expression
fsum2d.1  |-  ( z  =  <. j ,  k
>.  ->  D  =  C )
fsum2d.2  |-  ( ph  ->  A  e.  Fin )
fsum2d.3  |-  ( (
ph  /\  j  e.  A )  ->  B  e.  Fin )
fsum2d.4  |-  ( (
ph  /\  ( j  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )
Assertion
Ref Expression
fsum2d  |-  ( ph  -> 
sum_ j  e.  A  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D )
Distinct variable groups:    j, k, z, A    B, k, z    D, j, k    z, C    ph, j,
k, z
Allowed substitution hints:    B( j)    C( j, k)    D( z)

Proof of Theorem fsum2d
Dummy variables  w  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3221 . 2  |-  A  C_  A
2 fsum2d.2 . . 3  |-  ( ph  ->  A  e.  Fin )
3 sseq1 3224 . . . . . 6  |-  ( w  =  (/)  ->  ( w 
C_  A  <->  (/)  C_  A
) )
4 sumeq1 11781 . . . . . . 7  |-  ( w  =  (/)  ->  sum_ j  e.  w  sum_ k  e.  B  C  =  sum_ j  e.  (/)  sum_ k  e.  B  C )
5 iuneq1 3954 . . . . . . . 8  |-  ( w  =  (/)  ->  U_ j  e.  w  ( {
j }  X.  B
)  =  U_ j  e.  (/)  ( { j }  X.  B ) )
65sumeq1d 11792 . . . . . . 7  |-  ( w  =  (/)  ->  sum_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D  = 
sum_ z  e.  U_  j  e.  (/)  ( { j }  X.  B
) D )
74, 6eqeq12d 2222 . . . . . 6  |-  ( w  =  (/)  ->  ( sum_ j  e.  w  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D  <->  sum_ j  e.  (/)  sum_ k  e.  B  C  =  sum_ z  e. 
U_  j  e.  (/)  ( { j }  X.  B ) D ) )
83, 7imbi12d 234 . . . . 5  |-  ( w  =  (/)  ->  ( ( w  C_  A  ->  sum_ j  e.  w  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D )  <-> 
( (/)  C_  A  ->  sum_ j  e.  (/)  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  (/)  ( { j }  X.  B ) D ) ) )
98imbi2d 230 . . . 4  |-  ( w  =  (/)  ->  ( (
ph  ->  ( w  C_  A  ->  sum_ j  e.  w  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D ) )  <->  ( ph  ->  (
(/)  C_  A  ->  sum_ j  e.  (/)  sum_ k  e.  B  C  =  sum_ z  e. 
U_  j  e.  (/)  ( { j }  X.  B ) D ) ) ) )
10 sseq1 3224 . . . . . 6  |-  ( w  =  x  ->  (
w  C_  A  <->  x  C_  A
) )
11 sumeq1 11781 . . . . . . 7  |-  ( w  =  x  ->  sum_ j  e.  w  sum_ k  e.  B  C  =  sum_ j  e.  x  sum_ k  e.  B  C
)
12 iuneq1 3954 . . . . . . . 8  |-  ( w  =  x  ->  U_ j  e.  w  ( {
j }  X.  B
)  =  U_ j  e.  x  ( {
j }  X.  B
) )
1312sumeq1d 11792 . . . . . . 7  |-  ( w  =  x  ->  sum_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D  = 
sum_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D )
1411, 13eqeq12d 2222 . . . . . 6  |-  ( w  =  x  ->  ( sum_ j  e.  w  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D  <->  sum_ j  e.  x  sum_ k  e.  B  C  =  sum_ z  e. 
U_  j  e.  x  ( { j }  X.  B ) D ) )
1510, 14imbi12d 234 . . . . 5  |-  ( w  =  x  ->  (
( w  C_  A  -> 
sum_ j  e.  w  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D )  <-> 
( x  C_  A  -> 
sum_ j  e.  x  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D ) ) )
1615imbi2d 230 . . . 4  |-  ( w  =  x  ->  (
( ph  ->  ( w 
C_  A  ->  sum_ j  e.  w  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D ) )  <->  ( ph  ->  ( x  C_  A  -> 
sum_ j  e.  x  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D ) ) ) )
17 sseq1 3224 . . . . . 6  |-  ( w  =  ( x  u. 
{ y } )  ->  ( w  C_  A 
<->  ( x  u.  {
y } )  C_  A ) )
18 sumeq1 11781 . . . . . . 7  |-  ( w  =  ( x  u. 
{ y } )  ->  sum_ j  e.  w  sum_ k  e.  B  C  =  sum_ j  e.  ( x  u.  { y } ) sum_ k  e.  B  C )
19 iuneq1 3954 . . . . . . . 8  |-  ( w  =  ( x  u. 
{ y } )  ->  U_ j  e.  w  ( { j }  X.  B )  =  U_ j  e.  ( x  u.  { y } ) ( { j }  X.  B ) )
2019sumeq1d 11792 . . . . . . 7  |-  ( w  =  ( x  u. 
{ y } )  ->  sum_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D  = 
sum_ z  e.  U_  j  e.  ( x  u.  { y } ) ( { j }  X.  B ) D )
2118, 20eqeq12d 2222 . . . . . 6  |-  ( w  =  ( x  u. 
{ y } )  ->  ( sum_ j  e.  w  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D  <->  sum_ j  e.  ( x  u.  { y } ) sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  ( x  u.  {
y } ) ( { j }  X.  B ) D ) )
2217, 21imbi12d 234 . . . . 5  |-  ( w  =  ( x  u. 
{ y } )  ->  ( ( w 
C_  A  ->  sum_ j  e.  w  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D )  <->  ( (
x  u.  { y } )  C_  A  -> 
sum_ j  e.  ( x  u.  { y } ) sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  ( x  u.  {
y } ) ( { j }  X.  B ) D ) ) )
2322imbi2d 230 . . . 4  |-  ( w  =  ( x  u. 
{ y } )  ->  ( ( ph  ->  ( w  C_  A  -> 
sum_ j  e.  w  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D ) )  <->  ( ph  ->  ( ( x  u.  {
y } )  C_  A  ->  sum_ j  e.  ( x  u.  { y } ) sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  ( x  u.  {
y } ) ( { j }  X.  B ) D ) ) ) )
24 sseq1 3224 . . . . . 6  |-  ( w  =  A  ->  (
w  C_  A  <->  A  C_  A
) )
25 sumeq1 11781 . . . . . . 7  |-  ( w  =  A  ->  sum_ j  e.  w  sum_ k  e.  B  C  =  sum_ j  e.  A  sum_ k  e.  B  C
)
26 iuneq1 3954 . . . . . . . 8  |-  ( w  =  A  ->  U_ j  e.  w  ( {
j }  X.  B
)  =  U_ j  e.  A  ( {
j }  X.  B
) )
2726sumeq1d 11792 . . . . . . 7  |-  ( w  =  A  ->  sum_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D  = 
sum_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D )
2825, 27eqeq12d 2222 . . . . . 6  |-  ( w  =  A  ->  ( sum_ j  e.  w  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D  <->  sum_ j  e.  A  sum_ k  e.  B  C  =  sum_ z  e. 
U_  j  e.  A  ( { j }  X.  B ) D ) )
2924, 28imbi12d 234 . . . . 5  |-  ( w  =  A  ->  (
( w  C_  A  -> 
sum_ j  e.  w  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D )  <-> 
( A  C_  A  -> 
sum_ j  e.  A  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D ) ) )
3029imbi2d 230 . . . 4  |-  ( w  =  A  ->  (
( ph  ->  ( w 
C_  A  ->  sum_ j  e.  w  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D ) )  <->  ( ph  ->  ( A  C_  A  -> 
sum_ j  e.  A  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D ) ) ) )
31 sum0 11814 . . . . . 6  |-  sum_ z  e.  (/)  D  =  0
32 0iun 3999 . . . . . . 7  |-  U_ j  e.  (/)  ( { j }  X.  B )  =  (/)
3332sumeq1i 11789 . . . . . 6  |-  sum_ z  e.  U_  j  e.  (/)  ( { j }  X.  B ) D  = 
sum_ z  e.  (/)  D
34 sum0 11814 . . . . . 6  |-  sum_ j  e.  (/)  sum_ k  e.  B  C  =  0
3531, 33, 343eqtr4ri 2239 . . . . 5  |-  sum_ j  e.  (/)  sum_ k  e.  B  C  =  sum_ z  e. 
U_  j  e.  (/)  ( { j }  X.  B ) D
36352a1i 27 . . . 4  |-  ( ph  ->  ( (/)  C_  A  ->  sum_ j  e.  (/)  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  (/)  ( { j }  X.  B ) D ) )
37 ssun1 3344 . . . . . . . . 9  |-  x  C_  ( x  u.  { y } )
38 sstr 3209 . . . . . . . . 9  |-  ( ( x  C_  ( x  u.  { y } )  /\  ( x  u. 
{ y } ) 
C_  A )  ->  x  C_  A )
3937, 38mpan 424 . . . . . . . 8  |-  ( ( x  u.  { y } )  C_  A  ->  x  C_  A )
4039imim1i 60 . . . . . . 7  |-  ( ( x  C_  A  ->  sum_ j  e.  x  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D )  ->  ( ( x  u.  { y } )  C_  A  ->  sum_ j  e.  x  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D ) )
41 fsum2d.1 . . . . . . . . . 10  |-  ( z  =  <. j ,  k
>.  ->  D  =  C )
422ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  Fin  /\  -.  y  e.  x
) )  /\  (
x  u.  { y } )  C_  A
)  ->  A  e.  Fin )
43 simpll 527 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  Fin  /\  -.  y  e.  x
) )  /\  (
x  u.  { y } )  C_  A
)  ->  ph )
44 fsum2d.3 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  A )  ->  B  e.  Fin )
4543, 44sylan 283 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  Fin  /\ 
-.  y  e.  x
) )  /\  (
x  u.  { y } )  C_  A
)  /\  j  e.  A )  ->  B  e.  Fin )
46 fsum2d.4 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )
4743, 46sylan 283 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  Fin  /\ 
-.  y  e.  x
) )  /\  (
x  u.  { y } )  C_  A
)  /\  ( j  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )
48 simplrr 536 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  Fin  /\  -.  y  e.  x
) )  /\  (
x  u.  { y } )  C_  A
)  ->  -.  y  e.  x )
49 simpr 110 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  Fin  /\  -.  y  e.  x
) )  /\  (
x  u.  { y } )  C_  A
)  ->  ( x  u.  { y } ) 
C_  A )
50 simplrl 535 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  Fin  /\  -.  y  e.  x
) )  /\  (
x  u.  { y } )  C_  A
)  ->  x  e.  Fin )
51 biid 171 . . . . . . . . . 10  |-  ( sum_ j  e.  x  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D  <->  sum_ j  e.  x  sum_ k  e.  B  C  =  sum_ z  e. 
U_  j  e.  x  ( { j }  X.  B ) D )
5241, 42, 45, 47, 48, 49, 50, 51fsum2dlemstep 11860 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( x  e.  Fin  /\ 
-.  y  e.  x
) )  /\  (
x  u.  { y } )  C_  A
)  /\  sum_ j  e.  x  sum_ k  e.  B  C  =  sum_ z  e. 
U_  j  e.  x  ( { j }  X.  B ) D )  ->  sum_ j  e.  ( x  u.  { y } ) sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  ( x  u.  {
y } ) ( { j }  X.  B ) D )
5352exp31 364 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Fin  /\  -.  y  e.  x ) )  -> 
( ( x  u. 
{ y } ) 
C_  A  ->  ( sum_ j  e.  x  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D  ->  sum_ j  e.  ( x  u.  { y } ) sum_ k  e.  B  C  =  sum_ z  e. 
U_  j  e.  ( x  u.  { y } ) ( { j }  X.  B
) D ) ) )
5453a2d 26 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  Fin  /\  -.  y  e.  x ) )  -> 
( ( ( x  u.  { y } )  C_  A  ->  sum_ j  e.  x  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D )  ->  ( ( x  u.  { y } )  C_  A  ->  sum_ j  e.  ( x  u.  { y } ) sum_ k  e.  B  C  =  sum_ z  e. 
U_  j  e.  ( x  u.  { y } ) ( { j }  X.  B
) D ) ) )
5540, 54syl5 32 . . . . . 6  |-  ( (
ph  /\  ( x  e.  Fin  /\  -.  y  e.  x ) )  -> 
( ( x  C_  A  ->  sum_ j  e.  x  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D )  ->  ( ( x  u.  { y } )  C_  A  ->  sum_ j  e.  ( x  u.  { y } ) sum_ k  e.  B  C  =  sum_ z  e. 
U_  j  e.  ( x  u.  { y } ) ( { j }  X.  B
) D ) ) )
5655expcom 116 . . . . 5  |-  ( ( x  e.  Fin  /\  -.  y  e.  x
)  ->  ( ph  ->  ( ( x  C_  A  ->  sum_ j  e.  x  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D )  ->  ( ( x  u.  { y } )  C_  A  ->  sum_ j  e.  ( x  u.  { y } ) sum_ k  e.  B  C  =  sum_ z  e. 
U_  j  e.  ( x  u.  { y } ) ( { j }  X.  B
) D ) ) ) )
5756a2d 26 . . . 4  |-  ( ( x  e.  Fin  /\  -.  y  e.  x
)  ->  ( ( ph  ->  ( x  C_  A  ->  sum_ j  e.  x  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D ) )  ->  ( ph  ->  ( ( x  u. 
{ y } ) 
C_  A  ->  sum_ j  e.  ( x  u.  {
y } ) sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  ( x  u.  { y } ) ( { j }  X.  B ) D ) ) ) )
589, 16, 23, 30, 36, 57findcard2s 7013 . . 3  |-  ( A  e.  Fin  ->  ( ph  ->  ( A  C_  A  ->  sum_ j  e.  A  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D ) ) )
592, 58mpcom 36 . 2  |-  ( ph  ->  ( A  C_  A  -> 
sum_ j  e.  A  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D ) )
601, 59mpi 15 1  |-  ( ph  -> 
sum_ j  e.  A  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178    u. cun 3172    C_ wss 3174   (/)c0 3468   {csn 3643   <.cop 3646   U_ciun 3941    X. cxp 4691   Fincfn 6850   CCcc 7958   0cc0 7960   sum_csu 11779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-disj 4036  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-frec 6500  df-1o 6525  df-oadd 6529  df-er 6643  df-en 6851  df-dom 6852  df-fin 6853  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-fz 10166  df-fzo 10300  df-seqfrec 10630  df-exp 10721  df-ihash 10958  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-clim 11705  df-sumdc 11780
This theorem is referenced by:  fsumxp  11862  fisumcom2  11864
  Copyright terms: Public domain W3C validator