ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsum2d Unicode version

Theorem fsum2d 11600
Description: Write a double sum as a sum over a two-dimensional region. Note that  B ( j ) is a function of  j. (Contributed by Mario Carneiro, 27-Apr-2014.)
Hypotheses
Ref Expression
fsum2d.1  |-  ( z  =  <. j ,  k
>.  ->  D  =  C )
fsum2d.2  |-  ( ph  ->  A  e.  Fin )
fsum2d.3  |-  ( (
ph  /\  j  e.  A )  ->  B  e.  Fin )
fsum2d.4  |-  ( (
ph  /\  ( j  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )
Assertion
Ref Expression
fsum2d  |-  ( ph  -> 
sum_ j  e.  A  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D )
Distinct variable groups:    j, k, z, A    B, k, z    D, j, k    z, C    ph, j,
k, z
Allowed substitution hints:    B( j)    C( j, k)    D( z)

Proof of Theorem fsum2d
Dummy variables  w  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3203 . 2  |-  A  C_  A
2 fsum2d.2 . . 3  |-  ( ph  ->  A  e.  Fin )
3 sseq1 3206 . . . . . 6  |-  ( w  =  (/)  ->  ( w 
C_  A  <->  (/)  C_  A
) )
4 sumeq1 11520 . . . . . . 7  |-  ( w  =  (/)  ->  sum_ j  e.  w  sum_ k  e.  B  C  =  sum_ j  e.  (/)  sum_ k  e.  B  C )
5 iuneq1 3929 . . . . . . . 8  |-  ( w  =  (/)  ->  U_ j  e.  w  ( {
j }  X.  B
)  =  U_ j  e.  (/)  ( { j }  X.  B ) )
65sumeq1d 11531 . . . . . . 7  |-  ( w  =  (/)  ->  sum_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D  = 
sum_ z  e.  U_  j  e.  (/)  ( { j }  X.  B
) D )
74, 6eqeq12d 2211 . . . . . 6  |-  ( w  =  (/)  ->  ( sum_ j  e.  w  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D  <->  sum_ j  e.  (/)  sum_ k  e.  B  C  =  sum_ z  e. 
U_  j  e.  (/)  ( { j }  X.  B ) D ) )
83, 7imbi12d 234 . . . . 5  |-  ( w  =  (/)  ->  ( ( w  C_  A  ->  sum_ j  e.  w  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D )  <-> 
( (/)  C_  A  ->  sum_ j  e.  (/)  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  (/)  ( { j }  X.  B ) D ) ) )
98imbi2d 230 . . . 4  |-  ( w  =  (/)  ->  ( (
ph  ->  ( w  C_  A  ->  sum_ j  e.  w  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D ) )  <->  ( ph  ->  (
(/)  C_  A  ->  sum_ j  e.  (/)  sum_ k  e.  B  C  =  sum_ z  e. 
U_  j  e.  (/)  ( { j }  X.  B ) D ) ) ) )
10 sseq1 3206 . . . . . 6  |-  ( w  =  x  ->  (
w  C_  A  <->  x  C_  A
) )
11 sumeq1 11520 . . . . . . 7  |-  ( w  =  x  ->  sum_ j  e.  w  sum_ k  e.  B  C  =  sum_ j  e.  x  sum_ k  e.  B  C
)
12 iuneq1 3929 . . . . . . . 8  |-  ( w  =  x  ->  U_ j  e.  w  ( {
j }  X.  B
)  =  U_ j  e.  x  ( {
j }  X.  B
) )
1312sumeq1d 11531 . . . . . . 7  |-  ( w  =  x  ->  sum_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D  = 
sum_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D )
1411, 13eqeq12d 2211 . . . . . 6  |-  ( w  =  x  ->  ( sum_ j  e.  w  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D  <->  sum_ j  e.  x  sum_ k  e.  B  C  =  sum_ z  e. 
U_  j  e.  x  ( { j }  X.  B ) D ) )
1510, 14imbi12d 234 . . . . 5  |-  ( w  =  x  ->  (
( w  C_  A  -> 
sum_ j  e.  w  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D )  <-> 
( x  C_  A  -> 
sum_ j  e.  x  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D ) ) )
1615imbi2d 230 . . . 4  |-  ( w  =  x  ->  (
( ph  ->  ( w 
C_  A  ->  sum_ j  e.  w  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D ) )  <->  ( ph  ->  ( x  C_  A  -> 
sum_ j  e.  x  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D ) ) ) )
17 sseq1 3206 . . . . . 6  |-  ( w  =  ( x  u. 
{ y } )  ->  ( w  C_  A 
<->  ( x  u.  {
y } )  C_  A ) )
18 sumeq1 11520 . . . . . . 7  |-  ( w  =  ( x  u. 
{ y } )  ->  sum_ j  e.  w  sum_ k  e.  B  C  =  sum_ j  e.  ( x  u.  { y } ) sum_ k  e.  B  C )
19 iuneq1 3929 . . . . . . . 8  |-  ( w  =  ( x  u. 
{ y } )  ->  U_ j  e.  w  ( { j }  X.  B )  =  U_ j  e.  ( x  u.  { y } ) ( { j }  X.  B ) )
2019sumeq1d 11531 . . . . . . 7  |-  ( w  =  ( x  u. 
{ y } )  ->  sum_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D  = 
sum_ z  e.  U_  j  e.  ( x  u.  { y } ) ( { j }  X.  B ) D )
2118, 20eqeq12d 2211 . . . . . 6  |-  ( w  =  ( x  u. 
{ y } )  ->  ( sum_ j  e.  w  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D  <->  sum_ j  e.  ( x  u.  { y } ) sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  ( x  u.  {
y } ) ( { j }  X.  B ) D ) )
2217, 21imbi12d 234 . . . . 5  |-  ( w  =  ( x  u. 
{ y } )  ->  ( ( w 
C_  A  ->  sum_ j  e.  w  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D )  <->  ( (
x  u.  { y } )  C_  A  -> 
sum_ j  e.  ( x  u.  { y } ) sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  ( x  u.  {
y } ) ( { j }  X.  B ) D ) ) )
2322imbi2d 230 . . . 4  |-  ( w  =  ( x  u. 
{ y } )  ->  ( ( ph  ->  ( w  C_  A  -> 
sum_ j  e.  w  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D ) )  <->  ( ph  ->  ( ( x  u.  {
y } )  C_  A  ->  sum_ j  e.  ( x  u.  { y } ) sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  ( x  u.  {
y } ) ( { j }  X.  B ) D ) ) ) )
24 sseq1 3206 . . . . . 6  |-  ( w  =  A  ->  (
w  C_  A  <->  A  C_  A
) )
25 sumeq1 11520 . . . . . . 7  |-  ( w  =  A  ->  sum_ j  e.  w  sum_ k  e.  B  C  =  sum_ j  e.  A  sum_ k  e.  B  C
)
26 iuneq1 3929 . . . . . . . 8  |-  ( w  =  A  ->  U_ j  e.  w  ( {
j }  X.  B
)  =  U_ j  e.  A  ( {
j }  X.  B
) )
2726sumeq1d 11531 . . . . . . 7  |-  ( w  =  A  ->  sum_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D  = 
sum_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D )
2825, 27eqeq12d 2211 . . . . . 6  |-  ( w  =  A  ->  ( sum_ j  e.  w  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D  <->  sum_ j  e.  A  sum_ k  e.  B  C  =  sum_ z  e. 
U_  j  e.  A  ( { j }  X.  B ) D ) )
2924, 28imbi12d 234 . . . . 5  |-  ( w  =  A  ->  (
( w  C_  A  -> 
sum_ j  e.  w  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D )  <-> 
( A  C_  A  -> 
sum_ j  e.  A  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D ) ) )
3029imbi2d 230 . . . 4  |-  ( w  =  A  ->  (
( ph  ->  ( w 
C_  A  ->  sum_ j  e.  w  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D ) )  <->  ( ph  ->  ( A  C_  A  -> 
sum_ j  e.  A  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D ) ) ) )
31 sum0 11553 . . . . . 6  |-  sum_ z  e.  (/)  D  =  0
32 0iun 3974 . . . . . . 7  |-  U_ j  e.  (/)  ( { j }  X.  B )  =  (/)
3332sumeq1i 11528 . . . . . 6  |-  sum_ z  e.  U_  j  e.  (/)  ( { j }  X.  B ) D  = 
sum_ z  e.  (/)  D
34 sum0 11553 . . . . . 6  |-  sum_ j  e.  (/)  sum_ k  e.  B  C  =  0
3531, 33, 343eqtr4ri 2228 . . . . 5  |-  sum_ j  e.  (/)  sum_ k  e.  B  C  =  sum_ z  e. 
U_  j  e.  (/)  ( { j }  X.  B ) D
36352a1i 27 . . . 4  |-  ( ph  ->  ( (/)  C_  A  ->  sum_ j  e.  (/)  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  (/)  ( { j }  X.  B ) D ) )
37 ssun1 3326 . . . . . . . . 9  |-  x  C_  ( x  u.  { y } )
38 sstr 3191 . . . . . . . . 9  |-  ( ( x  C_  ( x  u.  { y } )  /\  ( x  u. 
{ y } ) 
C_  A )  ->  x  C_  A )
3937, 38mpan 424 . . . . . . . 8  |-  ( ( x  u.  { y } )  C_  A  ->  x  C_  A )
4039imim1i 60 . . . . . . 7  |-  ( ( x  C_  A  ->  sum_ j  e.  x  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D )  ->  ( ( x  u.  { y } )  C_  A  ->  sum_ j  e.  x  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D ) )
41 fsum2d.1 . . . . . . . . . 10  |-  ( z  =  <. j ,  k
>.  ->  D  =  C )
422ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  Fin  /\  -.  y  e.  x
) )  /\  (
x  u.  { y } )  C_  A
)  ->  A  e.  Fin )
43 simpll 527 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  Fin  /\  -.  y  e.  x
) )  /\  (
x  u.  { y } )  C_  A
)  ->  ph )
44 fsum2d.3 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  A )  ->  B  e.  Fin )
4543, 44sylan 283 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  Fin  /\ 
-.  y  e.  x
) )  /\  (
x  u.  { y } )  C_  A
)  /\  j  e.  A )  ->  B  e.  Fin )
46 fsum2d.4 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )
4743, 46sylan 283 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  Fin  /\ 
-.  y  e.  x
) )  /\  (
x  u.  { y } )  C_  A
)  /\  ( j  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )
48 simplrr 536 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  Fin  /\  -.  y  e.  x
) )  /\  (
x  u.  { y } )  C_  A
)  ->  -.  y  e.  x )
49 simpr 110 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  Fin  /\  -.  y  e.  x
) )  /\  (
x  u.  { y } )  C_  A
)  ->  ( x  u.  { y } ) 
C_  A )
50 simplrl 535 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  Fin  /\  -.  y  e.  x
) )  /\  (
x  u.  { y } )  C_  A
)  ->  x  e.  Fin )
51 biid 171 . . . . . . . . . 10  |-  ( sum_ j  e.  x  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D  <->  sum_ j  e.  x  sum_ k  e.  B  C  =  sum_ z  e. 
U_  j  e.  x  ( { j }  X.  B ) D )
5241, 42, 45, 47, 48, 49, 50, 51fsum2dlemstep 11599 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( x  e.  Fin  /\ 
-.  y  e.  x
) )  /\  (
x  u.  { y } )  C_  A
)  /\  sum_ j  e.  x  sum_ k  e.  B  C  =  sum_ z  e. 
U_  j  e.  x  ( { j }  X.  B ) D )  ->  sum_ j  e.  ( x  u.  { y } ) sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  ( x  u.  {
y } ) ( { j }  X.  B ) D )
5352exp31 364 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Fin  /\  -.  y  e.  x ) )  -> 
( ( x  u. 
{ y } ) 
C_  A  ->  ( sum_ j  e.  x  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D  ->  sum_ j  e.  ( x  u.  { y } ) sum_ k  e.  B  C  =  sum_ z  e. 
U_  j  e.  ( x  u.  { y } ) ( { j }  X.  B
) D ) ) )
5453a2d 26 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  Fin  /\  -.  y  e.  x ) )  -> 
( ( ( x  u.  { y } )  C_  A  ->  sum_ j  e.  x  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D )  ->  ( ( x  u.  { y } )  C_  A  ->  sum_ j  e.  ( x  u.  { y } ) sum_ k  e.  B  C  =  sum_ z  e. 
U_  j  e.  ( x  u.  { y } ) ( { j }  X.  B
) D ) ) )
5540, 54syl5 32 . . . . . 6  |-  ( (
ph  /\  ( x  e.  Fin  /\  -.  y  e.  x ) )  -> 
( ( x  C_  A  ->  sum_ j  e.  x  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D )  ->  ( ( x  u.  { y } )  C_  A  ->  sum_ j  e.  ( x  u.  { y } ) sum_ k  e.  B  C  =  sum_ z  e. 
U_  j  e.  ( x  u.  { y } ) ( { j }  X.  B
) D ) ) )
5655expcom 116 . . . . 5  |-  ( ( x  e.  Fin  /\  -.  y  e.  x
)  ->  ( ph  ->  ( ( x  C_  A  ->  sum_ j  e.  x  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D )  ->  ( ( x  u.  { y } )  C_  A  ->  sum_ j  e.  ( x  u.  { y } ) sum_ k  e.  B  C  =  sum_ z  e. 
U_  j  e.  ( x  u.  { y } ) ( { j }  X.  B
) D ) ) ) )
5756a2d 26 . . . 4  |-  ( ( x  e.  Fin  /\  -.  y  e.  x
)  ->  ( ( ph  ->  ( x  C_  A  ->  sum_ j  e.  x  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D ) )  ->  ( ph  ->  ( ( x  u. 
{ y } ) 
C_  A  ->  sum_ j  e.  ( x  u.  {
y } ) sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  ( x  u.  { y } ) ( { j }  X.  B ) D ) ) ) )
589, 16, 23, 30, 36, 57findcard2s 6951 . . 3  |-  ( A  e.  Fin  ->  ( ph  ->  ( A  C_  A  ->  sum_ j  e.  A  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D ) ) )
592, 58mpcom 36 . 2  |-  ( ph  ->  ( A  C_  A  -> 
sum_ j  e.  A  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D ) )
601, 59mpi 15 1  |-  ( ph  -> 
sum_ j  e.  A  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167    u. cun 3155    C_ wss 3157   (/)c0 3450   {csn 3622   <.cop 3625   U_ciun 3916    X. cxp 4661   Fincfn 6799   CCcc 7877   0cc0 7879   sum_csu 11518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-disj 4011  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-sumdc 11519
This theorem is referenced by:  fsumxp  11601  fisumcom2  11603
  Copyright terms: Public domain W3C validator