ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumiun Unicode version

Theorem fsumiun 10867
Description: Sum over a disjoint indexed union. (Contributed by Mario Carneiro, 1-Jul-2015.) (Revised by Mario Carneiro, 10-Dec-2016.)
Hypotheses
Ref Expression
fsumiun.1  |-  ( ph  ->  A  e.  Fin )
fsumiun.2  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  Fin )
fsumiun.3  |-  ( ph  -> Disj  x  e.  A  B
)
fsumiun.4  |-  ( (
ph  /\  ( x  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )
Assertion
Ref Expression
fsumiun  |-  ( ph  -> 
sum_ k  e.  U_  x  e.  A  B C  =  sum_ x  e.  A  sum_ k  e.  B  C )
Distinct variable groups:    x, k, A    B, k    ph, k, x   
x, C
Allowed substitution hints:    B( x)    C( k)

Proof of Theorem fsumiun
Dummy variables  u  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3044 . 2  |-  A  C_  A
2 fsumiun.1 . . 3  |-  ( ph  ->  A  e.  Fin )
3 sseq1 3047 . . . . . 6  |-  ( u  =  (/)  ->  ( u 
C_  A  <->  (/)  C_  A
) )
4 iuneq1 3743 . . . . . . . . 9  |-  ( u  =  (/)  ->  U_ x  e.  u  B  =  U_ x  e.  (/)  B )
5 0iun 3787 . . . . . . . . 9  |-  U_ x  e.  (/)  B  =  (/)
64, 5syl6eq 2136 . . . . . . . 8  |-  ( u  =  (/)  ->  U_ x  e.  u  B  =  (/) )
76sumeq1d 10751 . . . . . . 7  |-  ( u  =  (/)  ->  sum_ k  e.  U_  x  e.  u  B C  =  sum_ k  e.  (/)  C )
8 sumeq1 10740 . . . . . . 7  |-  ( u  =  (/)  ->  sum_ x  e.  u  sum_ k  e.  B  C  =  sum_ x  e.  (/)  sum_ k  e.  B  C )
97, 8eqeq12d 2102 . . . . . 6  |-  ( u  =  (/)  ->  ( sum_ k  e.  U_  x  e.  u  B C  = 
sum_ x  e.  u  sum_ k  e.  B  C  <->  sum_ k  e.  (/)  C  = 
sum_ x  e.  (/)  sum_ k  e.  B  C )
)
103, 9imbi12d 232 . . . . 5  |-  ( u  =  (/)  ->  ( ( u  C_  A  ->  sum_ k  e.  U_  x  e.  u  B C  =  sum_ x  e.  u  sum_ k  e.  B  C
)  <->  ( (/)  C_  A  -> 
sum_ k  e.  (/)  C  =  sum_ x  e.  (/)  sum_ k  e.  B  C
) ) )
1110imbi2d 228 . . . 4  |-  ( u  =  (/)  ->  ( (
ph  ->  ( u  C_  A  ->  sum_ k  e.  U_  x  e.  u  B C  =  sum_ x  e.  u  sum_ k  e.  B  C ) )  <->  ( ph  ->  ( (/)  C_  A  ->  sum_ k  e.  (/)  C  = 
sum_ x  e.  (/)  sum_ k  e.  B  C )
) ) )
12 sseq1 3047 . . . . . 6  |-  ( u  =  z  ->  (
u  C_  A  <->  z  C_  A ) )
13 iuneq1 3743 . . . . . . . 8  |-  ( u  =  z  ->  U_ x  e.  u  B  =  U_ x  e.  z  B )
1413sumeq1d 10751 . . . . . . 7  |-  ( u  =  z  ->  sum_ k  e.  U_  x  e.  u  B C  =  sum_ k  e.  U_  x  e.  z  B C )
15 sumeq1 10740 . . . . . . 7  |-  ( u  =  z  ->  sum_ x  e.  u  sum_ k  e.  B  C  =  sum_ x  e.  z  sum_ k  e.  B  C )
1614, 15eqeq12d 2102 . . . . . 6  |-  ( u  =  z  ->  ( sum_ k  e.  U_  x  e.  u  B C  =  sum_ x  e.  u  sum_ k  e.  B  C  <->  sum_ k  e.  U_  x  e.  z  B C  =  sum_ x  e.  z 
sum_ k  e.  B  C ) )
1712, 16imbi12d 232 . . . . 5  |-  ( u  =  z  ->  (
( u  C_  A  -> 
sum_ k  e.  U_  x  e.  u  B C  =  sum_ x  e.  u  sum_ k  e.  B  C )  <->  ( z  C_  A  ->  sum_ k  e. 
U_  x  e.  z  B C  =  sum_ x  e.  z  sum_ k  e.  B  C )
) )
1817imbi2d 228 . . . 4  |-  ( u  =  z  ->  (
( ph  ->  ( u 
C_  A  ->  sum_ k  e.  U_  x  e.  u  B C  =  sum_ x  e.  u  sum_ k  e.  B  C )
)  <->  ( ph  ->  ( z  C_  A  ->  sum_ k  e.  U_  x  e.  z  B C  =  sum_ x  e.  z 
sum_ k  e.  B  C ) ) ) )
19 sseq1 3047 . . . . . 6  |-  ( u  =  ( z  u. 
{ w } )  ->  ( u  C_  A 
<->  ( z  u.  {
w } )  C_  A ) )
20 iuneq1 3743 . . . . . . . 8  |-  ( u  =  ( z  u. 
{ w } )  ->  U_ x  e.  u  B  =  U_ x  e.  ( z  u.  {
w } ) B )
2120sumeq1d 10751 . . . . . . 7  |-  ( u  =  ( z  u. 
{ w } )  ->  sum_ k  e.  U_  x  e.  u  B C  =  sum_ k  e. 
U_  x  e.  ( z  u.  { w } ) B C )
22 sumeq1 10740 . . . . . . 7  |-  ( u  =  ( z  u. 
{ w } )  ->  sum_ x  e.  u  sum_ k  e.  B  C  =  sum_ x  e.  ( z  u.  { w } ) sum_ k  e.  B  C )
2321, 22eqeq12d 2102 . . . . . 6  |-  ( u  =  ( z  u. 
{ w } )  ->  ( sum_ k  e.  U_  x  e.  u  B C  =  sum_ x  e.  u  sum_ k  e.  B  C  <->  sum_ k  e. 
U_  x  e.  ( z  u.  { w } ) B C  =  sum_ x  e.  ( z  u.  { w } ) sum_ k  e.  B  C )
)
2419, 23imbi12d 232 . . . . 5  |-  ( u  =  ( z  u. 
{ w } )  ->  ( ( u 
C_  A  ->  sum_ k  e.  U_  x  e.  u  B C  =  sum_ x  e.  u  sum_ k  e.  B  C )  <->  ( ( z  u.  {
w } )  C_  A  ->  sum_ k  e.  U_  x  e.  ( z  u.  { w } ) B C  =  sum_ x  e.  ( z  u. 
{ w } )
sum_ k  e.  B  C ) ) )
2524imbi2d 228 . . . 4  |-  ( u  =  ( z  u. 
{ w } )  ->  ( ( ph  ->  ( u  C_  A  -> 
sum_ k  e.  U_  x  e.  u  B C  =  sum_ x  e.  u  sum_ k  e.  B  C ) )  <->  ( ph  ->  ( ( z  u. 
{ w } ) 
C_  A  ->  sum_ k  e.  U_  x  e.  ( z  u.  { w } ) B C  =  sum_ x  e.  ( z  u.  { w } ) sum_ k  e.  B  C )
) ) )
26 sseq1 3047 . . . . . 6  |-  ( u  =  A  ->  (
u  C_  A  <->  A  C_  A
) )
27 iuneq1 3743 . . . . . . . 8  |-  ( u  =  A  ->  U_ x  e.  u  B  =  U_ x  e.  A  B
)
2827sumeq1d 10751 . . . . . . 7  |-  ( u  =  A  ->  sum_ k  e.  U_  x  e.  u  B C  =  sum_ k  e.  U_  x  e.  A  B C )
29 sumeq1 10740 . . . . . . 7  |-  ( u  =  A  ->  sum_ x  e.  u  sum_ k  e.  B  C  =  sum_ x  e.  A  sum_ k  e.  B  C )
3028, 29eqeq12d 2102 . . . . . 6  |-  ( u  =  A  ->  ( sum_ k  e.  U_  x  e.  u  B C  =  sum_ x  e.  u  sum_ k  e.  B  C  <->  sum_ k  e.  U_  x  e.  A  B C  =  sum_ x  e.  A  sum_ k  e.  B  C
) )
3126, 30imbi12d 232 . . . . 5  |-  ( u  =  A  ->  (
( u  C_  A  -> 
sum_ k  e.  U_  x  e.  u  B C  =  sum_ x  e.  u  sum_ k  e.  B  C )  <->  ( A  C_  A  ->  sum_ k  e. 
U_  x  e.  A  B C  =  sum_ x  e.  A  sum_ k  e.  B  C )
) )
3231imbi2d 228 . . . 4  |-  ( u  =  A  ->  (
( ph  ->  ( u 
C_  A  ->  sum_ k  e.  U_  x  e.  u  B C  =  sum_ x  e.  u  sum_ k  e.  B  C )
)  <->  ( ph  ->  ( A  C_  A  ->  sum_ k  e.  U_  x  e.  A  B C  =  sum_ x  e.  A  sum_ k  e.  B  C
) ) ) )
33 sum0 10776 . . . . . 6  |-  sum_ k  e.  (/)  C  =  0
34 sum0 10776 . . . . . 6  |-  sum_ x  e.  (/)  sum_ k  e.  B  C  =  0
3533, 34eqtr4i 2111 . . . . 5  |-  sum_ k  e.  (/)  C  =  sum_ x  e.  (/)  sum_ k  e.  B  C
36352a1i 27 . . . 4  |-  ( ph  ->  ( (/)  C_  A  ->  sum_ k  e.  (/)  C  = 
sum_ x  e.  (/)  sum_ k  e.  B  C )
)
37 id 19 . . . . . . . . 9  |-  ( ( z  u.  { w } )  C_  A  ->  ( z  u.  {
w } )  C_  A )
3837unssad 3177 . . . . . . . 8  |-  ( ( z  u.  { w } )  C_  A  ->  z  C_  A )
3938imim1i 59 . . . . . . 7  |-  ( ( z  C_  A  ->  sum_ k  e.  U_  x  e.  z  B C  =  sum_ x  e.  z 
sum_ k  e.  B  C )  ->  (
( z  u.  {
w } )  C_  A  ->  sum_ k  e.  U_  x  e.  z  B C  =  sum_ x  e.  z  sum_ k  e.  B  C ) )
40 oveq1 5659 . . . . . . . . . 10  |-  ( sum_ k  e.  U_  x  e.  z  B C  = 
sum_ x  e.  z  sum_ k  e.  B  C  ->  ( sum_ k  e.  U_  x  e.  z  B C  +  sum_ k  e. 
[_  w  /  x ]_ B C )  =  ( sum_ x  e.  z 
sum_ k  e.  B  C  +  sum_ k  e. 
[_  w  /  x ]_ B C ) )
41 nfcv 2228 . . . . . . . . . . . . . . . . 17  |-  F/_ z B
42 nfcsb1v 2963 . . . . . . . . . . . . . . . . 17  |-  F/_ x [_ z  /  x ]_ B
43 csbeq1a 2941 . . . . . . . . . . . . . . . . 17  |-  ( x  =  z  ->  B  =  [_ z  /  x ]_ B )
4441, 42, 43cbviun 3767 . . . . . . . . . . . . . . . 16  |-  U_ x  e.  { w } B  =  U_ z  e.  {
w } [_ z  /  x ]_ B
45 vex 2622 . . . . . . . . . . . . . . . . 17  |-  w  e. 
_V
46 csbeq1 2936 . . . . . . . . . . . . . . . . 17  |-  ( z  =  w  ->  [_ z  /  x ]_ B  = 
[_ w  /  x ]_ B )
4745, 46iunxsn 3806 . . . . . . . . . . . . . . . 16  |-  U_ z  e.  { w } [_ z  /  x ]_ B  =  [_ w  /  x ]_ B
4844, 47eqtri 2108 . . . . . . . . . . . . . . 15  |-  U_ x  e.  { w } B  =  [_ w  /  x ]_ B
4948ineq2i 3198 . . . . . . . . . . . . . 14  |-  ( U_ x  e.  z  B  i^i  U_ x  e.  {
w } B )  =  ( U_ x  e.  z  B  i^i  [_ w  /  x ]_ B )
50 fsumiun.3 . . . . . . . . . . . . . . . 16  |-  ( ph  -> Disj  x  e.  A  B
)
5150ad2antrr 472 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  -> Disj  x  e.  A  B )
5238adantl 271 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  z  C_  A )
53 simpr 108 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  (
z  u.  { w } )  C_  A
)
5453unssbd 3178 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  { w }  C_  A )
55 simplr 497 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  -.  w  e.  z )
56 disjsn 3504 . . . . . . . . . . . . . . . 16  |-  ( ( z  i^i  { w } )  =  (/)  <->  -.  w  e.  z )
5755, 56sylibr 132 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  (
z  i^i  { w } )  =  (/) )
58 disjiun 3840 . . . . . . . . . . . . . . 15  |-  ( (Disj  x  e.  A  B  /\  ( z  C_  A  /\  { w }  C_  A  /\  ( z  i^i 
{ w } )  =  (/) ) )  -> 
( U_ x  e.  z  B  i^i  U_ x  e.  { w } B
)  =  (/) )
5951, 52, 54, 57, 58syl13anc 1176 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  ( U_ x  e.  z  B  i^i  U_ x  e.  {
w } B )  =  (/) )
6049, 59syl5eqr 2134 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  ( U_ x  e.  z  B  i^i  [_ w  /  x ]_ B )  =  (/) )
6160adantlrl 466 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
z  e.  Fin  /\  -.  w  e.  z
) )  /\  (
z  u.  { w } )  C_  A
)  ->  ( U_ x  e.  z  B  i^i  [_ w  /  x ]_ B )  =  (/) )
62 iunxun 3809 . . . . . . . . . . . . . 14  |-  U_ x  e.  ( z  u.  {
w } ) B  =  ( U_ x  e.  z  B  u.  U_ x  e.  { w } B )
6348uneq2i 3151 . . . . . . . . . . . . . 14  |-  ( U_ x  e.  z  B  u.  U_ x  e.  {
w } B )  =  ( U_ x  e.  z  B  u.  [_ w  /  x ]_ B )
6462, 63eqtri 2108 . . . . . . . . . . . . 13  |-  U_ x  e.  ( z  u.  {
w } ) B  =  ( U_ x  e.  z  B  u.  [_ w  /  x ]_ B )
6564a1i 9 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
z  e.  Fin  /\  -.  w  e.  z
) )  /\  (
z  u.  { w } )  C_  A
)  ->  U_ x  e.  ( z  u.  {
w } ) B  =  ( U_ x  e.  z  B  u.  [_ w  /  x ]_ B ) )
66 simplrl 502 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
z  e.  Fin  /\  -.  w  e.  z
) )  /\  (
z  u.  { w } )  C_  A
)  ->  z  e.  Fin )
6745a1i 9 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
z  e.  Fin  /\  -.  w  e.  z
) )  /\  (
z  u.  { w } )  C_  A
)  ->  w  e.  _V )
6855adantlrl 466 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
z  e.  Fin  /\  -.  w  e.  z
) )  /\  (
z  u.  { w } )  C_  A
)  ->  -.  w  e.  z )
69 unsnfi 6627 . . . . . . . . . . . . . 14  |-  ( ( z  e.  Fin  /\  w  e.  _V  /\  -.  w  e.  z )  ->  ( z  u.  {
w } )  e. 
Fin )
7066, 67, 68, 69syl3anc 1174 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
z  e.  Fin  /\  -.  w  e.  z
) )  /\  (
z  u.  { w } )  C_  A
)  ->  ( z  u.  { w } )  e.  Fin )
71 fsumiun.2 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  Fin )
7271ralrimiva 2446 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A. x  e.  A  B  e.  Fin )
7372ad2antrr 472 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  A. x  e.  A  B  e.  Fin )
74 ssralv 3085 . . . . . . . . . . . . . . 15  |-  ( ( z  u.  { w } )  C_  A  ->  ( A. x  e.  A  B  e.  Fin  ->  A. x  e.  ( z  u.  { w } ) B  e. 
Fin ) )
7553, 73, 74sylc 61 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  A. x  e.  ( z  u.  {
w } ) B  e.  Fin )
7675adantlrl 466 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
z  e.  Fin  /\  -.  w  e.  z
) )  /\  (
z  u.  { w } )  C_  A
)  ->  A. x  e.  ( z  u.  {
w } ) B  e.  Fin )
77 disjss1 3828 . . . . . . . . . . . . . . 15  |-  ( ( z  u.  { w } )  C_  A  ->  (Disj  x  e.  A  B  -> Disj  x  e.  ( z  u.  { w }
) B ) )
7853, 51, 77sylc 61 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  -> Disj  x  e.  ( z  u.  {
w } ) B )
7978adantlrl 466 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
z  e.  Fin  /\  -.  w  e.  z
) )  /\  (
z  u.  { w } )  C_  A
)  -> Disj  x  e.  ( z  u.  { w } ) B )
80 iunfidisj 6653 . . . . . . . . . . . . 13  |-  ( ( ( z  u.  {
w } )  e. 
Fin  /\  A. x  e.  ( z  u.  {
w } ) B  e.  Fin  /\ Disj  x  e.  ( z  u.  {
w } ) B )  ->  U_ x  e.  ( z  u.  {
w } ) B  e.  Fin )
8170, 76, 79, 80syl3anc 1174 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
z  e.  Fin  /\  -.  w  e.  z
) )  /\  (
z  u.  { w } )  C_  A
)  ->  U_ x  e.  ( z  u.  {
w } ) B  e.  Fin )
82 iunss1 3741 . . . . . . . . . . . . . . 15  |-  ( ( z  u.  { w } )  C_  A  ->  U_ x  e.  ( z  u.  { w } ) B  C_  U_ x  e.  A  B
)
8382adantl 271 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
z  e.  Fin  /\  -.  w  e.  z
) )  /\  (
z  u.  { w } )  C_  A
)  ->  U_ x  e.  ( z  u.  {
w } ) B 
C_  U_ x  e.  A  B )
8483sselda 3025 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( z  e.  Fin  /\ 
-.  w  e.  z ) )  /\  (
z  u.  { w } )  C_  A
)  /\  k  e.  U_ x  e.  ( z  u.  { w }
) B )  -> 
k  e.  U_ x  e.  A  B )
85 eliun 3734 . . . . . . . . . . . . . . 15  |-  ( k  e.  U_ x  e.  A  B  <->  E. x  e.  A  k  e.  B )
86 fsumiun.4 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( x  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )
8786rexlimdvaa 2490 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( E. x  e.  A  k  e.  B  ->  C  e.  CC ) )
8887ad2antrr 472 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
z  e.  Fin  /\  -.  w  e.  z
) )  /\  (
z  u.  { w } )  C_  A
)  ->  ( E. x  e.  A  k  e.  B  ->  C  e.  CC ) )
8985, 88syl5bi 150 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
z  e.  Fin  /\  -.  w  e.  z
) )  /\  (
z  u.  { w } )  C_  A
)  ->  ( k  e.  U_ x  e.  A  B  ->  C  e.  CC ) )
9089imp 122 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( z  e.  Fin  /\ 
-.  w  e.  z ) )  /\  (
z  u.  { w } )  C_  A
)  /\  k  e.  U_ x  e.  A  B
)  ->  C  e.  CC )
9184, 90syldan 276 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( z  e.  Fin  /\ 
-.  w  e.  z ) )  /\  (
z  u.  { w } )  C_  A
)  /\  k  e.  U_ x  e.  ( z  u.  { w }
) B )  ->  C  e.  CC )
9261, 65, 81, 91fsumsplit 10797 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
z  e.  Fin  /\  -.  w  e.  z
) )  /\  (
z  u.  { w } )  C_  A
)  ->  sum_ k  e. 
U_  x  e.  ( z  u.  { w } ) B C  =  ( sum_ k  e.  U_  x  e.  z  B C  +  sum_ k  e.  [_  w  /  x ]_ B C ) )
9368, 56sylibr 132 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
z  e.  Fin  /\  -.  w  e.  z
) )  /\  (
z  u.  { w } )  C_  A
)  ->  ( z  i^i  { w } )  =  (/) )
94 eqidd 2089 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
z  e.  Fin  /\  -.  w  e.  z
) )  /\  (
z  u.  { w } )  C_  A
)  ->  ( z  u.  { w } )  =  ( z  u. 
{ w } ) )
95 simplr 497 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( z  e.  Fin  /\ 
-.  w  e.  z ) )  /\  (
z  u.  { w } )  C_  A
)  /\  x  e.  ( z  u.  {
w } ) )  ->  ( z  u. 
{ w } ) 
C_  A )
96 simpr 108 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( z  e.  Fin  /\ 
-.  w  e.  z ) )  /\  (
z  u.  { w } )  C_  A
)  /\  x  e.  ( z  u.  {
w } ) )  ->  x  e.  ( z  u.  { w } ) )
9795, 96sseldd 3026 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( z  e.  Fin  /\ 
-.  w  e.  z ) )  /\  (
z  u.  { w } )  C_  A
)  /\  x  e.  ( z  u.  {
w } ) )  ->  x  e.  A
)
9886anassrs 392 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  A )  /\  k  e.  B )  ->  C  e.  CC )
9971, 98fsumcl 10790 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  A )  ->  sum_ k  e.  B  C  e.  CC )
10099ralrimiva 2446 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A. x  e.  A  sum_ k  e.  B  C  e.  CC )
101100ad2antrr 472 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
z  e.  Fin  /\  -.  w  e.  z
) )  /\  (
z  u.  { w } )  C_  A
)  ->  A. x  e.  A  sum_ k  e.  B  C  e.  CC )
102101r19.21bi 2461 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( z  e.  Fin  /\ 
-.  w  e.  z ) )  /\  (
z  u.  { w } )  C_  A
)  /\  x  e.  A )  ->  sum_ k  e.  B  C  e.  CC )
10397, 102syldan 276 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( z  e.  Fin  /\ 
-.  w  e.  z ) )  /\  (
z  u.  { w } )  C_  A
)  /\  x  e.  ( z  u.  {
w } ) )  ->  sum_ k  e.  B  C  e.  CC )
10493, 94, 70, 103fsumsplit 10797 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
z  e.  Fin  /\  -.  w  e.  z
) )  /\  (
z  u.  { w } )  C_  A
)  ->  sum_ x  e.  ( z  u.  {
w } ) sum_ k  e.  B  C  =  ( sum_ x  e.  z  sum_ k  e.  B  C  +  sum_ x  e.  { w } sum_ k  e.  B  C
) )
105 nfcv 2228 . . . . . . . . . . . . . . . 16  |-  F/_ z sum_ k  e.  B  C
106 nfcv 2228 . . . . . . . . . . . . . . . . 17  |-  F/_ x C
10742, 106nfsum 10742 . . . . . . . . . . . . . . . 16  |-  F/_ x sum_ k  e.  [_  z  /  x ]_ B C
10843sumeq1d 10751 . . . . . . . . . . . . . . . 16  |-  ( x  =  z  ->  sum_ k  e.  B  C  =  sum_ k  e.  [_  z  /  x ]_ B C )
109105, 107, 108cbvsumi 10747 . . . . . . . . . . . . . . 15  |-  sum_ x  e.  { w } sum_ k  e.  B  C  =  sum_ z  e.  {
w } sum_ k  e.  [_  z  /  x ]_ B C
11045snss 3566 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  A  <->  { w }  C_  A )
11154, 110sylibr 132 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  w  e.  A )
112100ad2antrr 472 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  A. x  e.  A  sum_ k  e.  B  C  e.  CC )
113 nfcsb1v 2963 . . . . . . . . . . . . . . . . . . . 20  |-  F/_ x [_ w  /  x ]_ B
114113, 106nfsum 10742 . . . . . . . . . . . . . . . . . . 19  |-  F/_ x sum_ k  e.  [_  w  /  x ]_ B C
115114nfel1 2239 . . . . . . . . . . . . . . . . . 18  |-  F/ x sum_ k  e.  [_  w  /  x ]_ B C  e.  CC
116 csbeq1a 2941 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  w  ->  B  =  [_ w  /  x ]_ B )
117116sumeq1d 10751 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  w  ->  sum_ k  e.  B  C  =  sum_ k  e.  [_  w  /  x ]_ B C )
118117eleq1d 2156 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  w  ->  ( sum_ k  e.  B  C  e.  CC  <->  sum_ k  e.  [_  w  /  x ]_ B C  e.  CC )
)
119115, 118rspc 2716 . . . . . . . . . . . . . . . . 17  |-  ( w  e.  A  ->  ( A. x  e.  A  sum_ k  e.  B  C  e.  CC  ->  sum_ k  e. 
[_  w  /  x ]_ B C  e.  CC ) )
120111, 112, 119sylc 61 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  sum_ k  e.  [_  w  /  x ]_ B C  e.  CC )
12146sumeq1d 10751 . . . . . . . . . . . . . . . . 17  |-  ( z  =  w  ->  sum_ k  e.  [_  z  /  x ]_ B C  =  sum_ k  e.  [_  w  /  x ]_ B C )
122121sumsn 10801 . . . . . . . . . . . . . . . 16  |-  ( ( w  e.  _V  /\  sum_ k  e.  [_  w  /  x ]_ B C  e.  CC )  ->  sum_ z  e.  { w } sum_ k  e.  [_  z  /  x ]_ B C  =  sum_ k  e. 
[_  w  /  x ]_ B C )
12345, 120, 122sylancr 405 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  sum_ z  e.  { w } sum_ k  e.  [_  z  /  x ]_ B C  = 
sum_ k  e.  [_  w  /  x ]_ B C )
124109, 123syl5eq 2132 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  sum_ x  e.  { w } sum_ k  e.  B  C  =  sum_ k  e.  [_  w  /  x ]_ B C )
125124oveq2d 5668 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  ( sum_ x  e.  z  sum_ k  e.  B  C  +  sum_ x  e.  {
w } sum_ k  e.  B  C )  =  ( sum_ x  e.  z  sum_ k  e.  B  C  +  sum_ k  e.  [_  w  /  x ]_ B C ) )
126125adantlrl 466 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
z  e.  Fin  /\  -.  w  e.  z
) )  /\  (
z  u.  { w } )  C_  A
)  ->  ( sum_ x  e.  z  sum_ k  e.  B  C  +  sum_ x  e.  { w } sum_ k  e.  B  C )  =  (
sum_ x  e.  z  sum_ k  e.  B  C  +  sum_ k  e.  [_  w  /  x ]_ B C ) )
127104, 126eqtrd 2120 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
z  e.  Fin  /\  -.  w  e.  z
) )  /\  (
z  u.  { w } )  C_  A
)  ->  sum_ x  e.  ( z  u.  {
w } ) sum_ k  e.  B  C  =  ( sum_ x  e.  z  sum_ k  e.  B  C  +  sum_ k  e.  [_  w  /  x ]_ B C ) )
12892, 127eqeq12d 2102 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
z  e.  Fin  /\  -.  w  e.  z
) )  /\  (
z  u.  { w } )  C_  A
)  ->  ( sum_ k  e.  U_  x  e.  ( z  u.  {
w } ) B C  =  sum_ x  e.  ( z  u.  {
w } ) sum_ k  e.  B  C  <->  (
sum_ k  e.  U_  x  e.  z  B C  +  sum_ k  e. 
[_  w  /  x ]_ B C )  =  ( sum_ x  e.  z 
sum_ k  e.  B  C  +  sum_ k  e. 
[_  w  /  x ]_ B C ) ) )
12940, 128syl5ibr 154 . . . . . . . . 9  |-  ( ( ( ph  /\  (
z  e.  Fin  /\  -.  w  e.  z
) )  /\  (
z  u.  { w } )  C_  A
)  ->  ( sum_ k  e.  U_  x  e.  z  B C  = 
sum_ x  e.  z  sum_ k  e.  B  C  -> 
sum_ k  e.  U_  x  e.  ( z  u.  { w } ) B C  =  sum_ x  e.  ( z  u. 
{ w } )
sum_ k  e.  B  C ) )
130129ex 113 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  Fin  /\  -.  w  e.  z ) )  -> 
( ( z  u. 
{ w } ) 
C_  A  ->  ( sum_ k  e.  U_  x  e.  z  B C  =  sum_ x  e.  z 
sum_ k  e.  B  C  ->  sum_ k  e.  U_  x  e.  ( z  u.  { w } ) B C  =  sum_ x  e.  ( z  u. 
{ w } )
sum_ k  e.  B  C ) ) )
131130a2d 26 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  Fin  /\  -.  w  e.  z ) )  -> 
( ( ( z  u.  { w }
)  C_  A  ->  sum_ k  e.  U_  x  e.  z  B C  =  sum_ x  e.  z 
sum_ k  e.  B  C )  ->  (
( z  u.  {
w } )  C_  A  ->  sum_ k  e.  U_  x  e.  ( z  u.  { w } ) B C  =  sum_ x  e.  ( z  u. 
{ w } )
sum_ k  e.  B  C ) ) )
13239, 131syl5 32 . . . . . 6  |-  ( (
ph  /\  ( z  e.  Fin  /\  -.  w  e.  z ) )  -> 
( ( z  C_  A  ->  sum_ k  e.  U_  x  e.  z  B C  =  sum_ x  e.  z  sum_ k  e.  B  C )  ->  (
( z  u.  {
w } )  C_  A  ->  sum_ k  e.  U_  x  e.  ( z  u.  { w } ) B C  =  sum_ x  e.  ( z  u. 
{ w } )
sum_ k  e.  B  C ) ) )
133132expcom 114 . . . . 5  |-  ( ( z  e.  Fin  /\  -.  w  e.  z
)  ->  ( ph  ->  ( ( z  C_  A  ->  sum_ k  e.  U_  x  e.  z  B C  =  sum_ x  e.  z  sum_ k  e.  B  C )  ->  (
( z  u.  {
w } )  C_  A  ->  sum_ k  e.  U_  x  e.  ( z  u.  { w } ) B C  =  sum_ x  e.  ( z  u. 
{ w } )
sum_ k  e.  B  C ) ) ) )
134133a2d 26 . . . 4  |-  ( ( z  e.  Fin  /\  -.  w  e.  z
)  ->  ( ( ph  ->  ( z  C_  A  ->  sum_ k  e.  U_  x  e.  z  B C  =  sum_ x  e.  z  sum_ k  e.  B  C ) )  -> 
( ph  ->  ( ( z  u.  { w } )  C_  A  -> 
sum_ k  e.  U_  x  e.  ( z  u.  { w } ) B C  =  sum_ x  e.  ( z  u. 
{ w } )
sum_ k  e.  B  C ) ) ) )
13511, 18, 25, 32, 36, 134findcard2s 6604 . . 3  |-  ( A  e.  Fin  ->  ( ph  ->  ( A  C_  A  ->  sum_ k  e.  U_  x  e.  A  B C  =  sum_ x  e.  A  sum_ k  e.  B  C ) ) )
1362, 135mpcom 36 . 2  |-  ( ph  ->  ( A  C_  A  -> 
sum_ k  e.  U_  x  e.  A  B C  =  sum_ x  e.  A  sum_ k  e.  B  C ) )
1371, 136mpi 15 1  |-  ( ph  -> 
sum_ k  e.  U_  x  e.  A  B C  =  sum_ x  e.  A  sum_ k  e.  B  C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    = wceq 1289    e. wcel 1438   A.wral 2359   E.wrex 2360   _Vcvv 2619   [_csb 2933    u. cun 2997    i^i cin 2998    C_ wss 2999   (/)c0 3286   {csn 3446   U_ciun 3730  Disj wdisj 3822  (class class class)co 5652   Fincfn 6455   CCcc 7346   0cc0 7348    + caddc 7351   sum_csu 10738
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-nul 3965  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-iinf 4403  ax-cnex 7434  ax-resscn 7435  ax-1cn 7436  ax-1re 7437  ax-icn 7438  ax-addcl 7439  ax-addrcl 7440  ax-mulcl 7441  ax-mulrcl 7442  ax-addcom 7443  ax-mulcom 7444  ax-addass 7445  ax-mulass 7446  ax-distr 7447  ax-i2m1 7448  ax-0lt1 7449  ax-1rid 7450  ax-0id 7451  ax-rnegex 7452  ax-precex 7453  ax-cnre 7454  ax-pre-ltirr 7455  ax-pre-ltwlin 7456  ax-pre-lttrn 7457  ax-pre-apti 7458  ax-pre-ltadd 7459  ax-pre-mulgt0 7460  ax-pre-mulext 7461  ax-arch 7462  ax-caucvg 7463
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-if 3394  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-disj 3823  df-br 3846  df-opab 3900  df-mpt 3901  df-tr 3937  df-id 4120  df-po 4123  df-iso 4124  df-iord 4193  df-on 4195  df-ilim 4196  df-suc 4198  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-isom 5024  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-1st 5911  df-2nd 5912  df-recs 6070  df-irdg 6135  df-frec 6156  df-1o 6181  df-oadd 6185  df-er 6290  df-en 6456  df-dom 6457  df-fin 6458  df-pnf 7522  df-mnf 7523  df-xr 7524  df-ltxr 7525  df-le 7526  df-sub 7653  df-neg 7654  df-reap 8050  df-ap 8057  df-div 8138  df-inn 8421  df-2 8479  df-3 8480  df-4 8481  df-n0 8672  df-z 8749  df-uz 9018  df-q 9103  df-rp 9133  df-fz 9423  df-fzo 9550  df-iseq 9849  df-seq3 9850  df-exp 9951  df-ihash 10180  df-cj 10272  df-re 10273  df-im 10274  df-rsqrt 10427  df-abs 10428  df-clim 10663  df-isum 10739
This theorem is referenced by:  hashiun  10868
  Copyright terms: Public domain W3C validator