ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumiun Unicode version

Theorem fsumiun 11246
Description: Sum over a disjoint indexed union. (Contributed by Mario Carneiro, 1-Jul-2015.) (Revised by Mario Carneiro, 10-Dec-2016.)
Hypotheses
Ref Expression
fsumiun.1  |-  ( ph  ->  A  e.  Fin )
fsumiun.2  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  Fin )
fsumiun.3  |-  ( ph  -> Disj  x  e.  A  B
)
fsumiun.4  |-  ( (
ph  /\  ( x  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )
Assertion
Ref Expression
fsumiun  |-  ( ph  -> 
sum_ k  e.  U_  x  e.  A  B C  =  sum_ x  e.  A  sum_ k  e.  B  C )
Distinct variable groups:    x, k, A    B, k    ph, k, x   
x, C
Allowed substitution hints:    B( x)    C( k)

Proof of Theorem fsumiun
Dummy variables  u  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3117 . 2  |-  A  C_  A
2 fsumiun.1 . . 3  |-  ( ph  ->  A  e.  Fin )
3 sseq1 3120 . . . . . 6  |-  ( u  =  (/)  ->  ( u 
C_  A  <->  (/)  C_  A
) )
4 iuneq1 3826 . . . . . . . . 9  |-  ( u  =  (/)  ->  U_ x  e.  u  B  =  U_ x  e.  (/)  B )
5 0iun 3870 . . . . . . . . 9  |-  U_ x  e.  (/)  B  =  (/)
64, 5syl6eq 2188 . . . . . . . 8  |-  ( u  =  (/)  ->  U_ x  e.  u  B  =  (/) )
76sumeq1d 11135 . . . . . . 7  |-  ( u  =  (/)  ->  sum_ k  e.  U_  x  e.  u  B C  =  sum_ k  e.  (/)  C )
8 sumeq1 11124 . . . . . . 7  |-  ( u  =  (/)  ->  sum_ x  e.  u  sum_ k  e.  B  C  =  sum_ x  e.  (/)  sum_ k  e.  B  C )
97, 8eqeq12d 2154 . . . . . 6  |-  ( u  =  (/)  ->  ( sum_ k  e.  U_  x  e.  u  B C  = 
sum_ x  e.  u  sum_ k  e.  B  C  <->  sum_ k  e.  (/)  C  = 
sum_ x  e.  (/)  sum_ k  e.  B  C )
)
103, 9imbi12d 233 . . . . 5  |-  ( u  =  (/)  ->  ( ( u  C_  A  ->  sum_ k  e.  U_  x  e.  u  B C  =  sum_ x  e.  u  sum_ k  e.  B  C
)  <->  ( (/)  C_  A  -> 
sum_ k  e.  (/)  C  =  sum_ x  e.  (/)  sum_ k  e.  B  C
) ) )
1110imbi2d 229 . . . 4  |-  ( u  =  (/)  ->  ( (
ph  ->  ( u  C_  A  ->  sum_ k  e.  U_  x  e.  u  B C  =  sum_ x  e.  u  sum_ k  e.  B  C ) )  <->  ( ph  ->  ( (/)  C_  A  ->  sum_ k  e.  (/)  C  = 
sum_ x  e.  (/)  sum_ k  e.  B  C )
) ) )
12 sseq1 3120 . . . . . 6  |-  ( u  =  z  ->  (
u  C_  A  <->  z  C_  A ) )
13 iuneq1 3826 . . . . . . . 8  |-  ( u  =  z  ->  U_ x  e.  u  B  =  U_ x  e.  z  B )
1413sumeq1d 11135 . . . . . . 7  |-  ( u  =  z  ->  sum_ k  e.  U_  x  e.  u  B C  =  sum_ k  e.  U_  x  e.  z  B C )
15 sumeq1 11124 . . . . . . 7  |-  ( u  =  z  ->  sum_ x  e.  u  sum_ k  e.  B  C  =  sum_ x  e.  z  sum_ k  e.  B  C )
1614, 15eqeq12d 2154 . . . . . 6  |-  ( u  =  z  ->  ( sum_ k  e.  U_  x  e.  u  B C  =  sum_ x  e.  u  sum_ k  e.  B  C  <->  sum_ k  e.  U_  x  e.  z  B C  =  sum_ x  e.  z 
sum_ k  e.  B  C ) )
1712, 16imbi12d 233 . . . . 5  |-  ( u  =  z  ->  (
( u  C_  A  -> 
sum_ k  e.  U_  x  e.  u  B C  =  sum_ x  e.  u  sum_ k  e.  B  C )  <->  ( z  C_  A  ->  sum_ k  e. 
U_  x  e.  z  B C  =  sum_ x  e.  z  sum_ k  e.  B  C )
) )
1817imbi2d 229 . . . 4  |-  ( u  =  z  ->  (
( ph  ->  ( u 
C_  A  ->  sum_ k  e.  U_  x  e.  u  B C  =  sum_ x  e.  u  sum_ k  e.  B  C )
)  <->  ( ph  ->  ( z  C_  A  ->  sum_ k  e.  U_  x  e.  z  B C  =  sum_ x  e.  z 
sum_ k  e.  B  C ) ) ) )
19 sseq1 3120 . . . . . 6  |-  ( u  =  ( z  u. 
{ w } )  ->  ( u  C_  A 
<->  ( z  u.  {
w } )  C_  A ) )
20 iuneq1 3826 . . . . . . . 8  |-  ( u  =  ( z  u. 
{ w } )  ->  U_ x  e.  u  B  =  U_ x  e.  ( z  u.  {
w } ) B )
2120sumeq1d 11135 . . . . . . 7  |-  ( u  =  ( z  u. 
{ w } )  ->  sum_ k  e.  U_  x  e.  u  B C  =  sum_ k  e. 
U_  x  e.  ( z  u.  { w } ) B C )
22 sumeq1 11124 . . . . . . 7  |-  ( u  =  ( z  u. 
{ w } )  ->  sum_ x  e.  u  sum_ k  e.  B  C  =  sum_ x  e.  ( z  u.  { w } ) sum_ k  e.  B  C )
2321, 22eqeq12d 2154 . . . . . 6  |-  ( u  =  ( z  u. 
{ w } )  ->  ( sum_ k  e.  U_  x  e.  u  B C  =  sum_ x  e.  u  sum_ k  e.  B  C  <->  sum_ k  e. 
U_  x  e.  ( z  u.  { w } ) B C  =  sum_ x  e.  ( z  u.  { w } ) sum_ k  e.  B  C )
)
2419, 23imbi12d 233 . . . . 5  |-  ( u  =  ( z  u. 
{ w } )  ->  ( ( u 
C_  A  ->  sum_ k  e.  U_  x  e.  u  B C  =  sum_ x  e.  u  sum_ k  e.  B  C )  <->  ( ( z  u.  {
w } )  C_  A  ->  sum_ k  e.  U_  x  e.  ( z  u.  { w } ) B C  =  sum_ x  e.  ( z  u. 
{ w } )
sum_ k  e.  B  C ) ) )
2524imbi2d 229 . . . 4  |-  ( u  =  ( z  u. 
{ w } )  ->  ( ( ph  ->  ( u  C_  A  -> 
sum_ k  e.  U_  x  e.  u  B C  =  sum_ x  e.  u  sum_ k  e.  B  C ) )  <->  ( ph  ->  ( ( z  u. 
{ w } ) 
C_  A  ->  sum_ k  e.  U_  x  e.  ( z  u.  { w } ) B C  =  sum_ x  e.  ( z  u.  { w } ) sum_ k  e.  B  C )
) ) )
26 sseq1 3120 . . . . . 6  |-  ( u  =  A  ->  (
u  C_  A  <->  A  C_  A
) )
27 iuneq1 3826 . . . . . . . 8  |-  ( u  =  A  ->  U_ x  e.  u  B  =  U_ x  e.  A  B
)
2827sumeq1d 11135 . . . . . . 7  |-  ( u  =  A  ->  sum_ k  e.  U_  x  e.  u  B C  =  sum_ k  e.  U_  x  e.  A  B C )
29 sumeq1 11124 . . . . . . 7  |-  ( u  =  A  ->  sum_ x  e.  u  sum_ k  e.  B  C  =  sum_ x  e.  A  sum_ k  e.  B  C )
3028, 29eqeq12d 2154 . . . . . 6  |-  ( u  =  A  ->  ( sum_ k  e.  U_  x  e.  u  B C  =  sum_ x  e.  u  sum_ k  e.  B  C  <->  sum_ k  e.  U_  x  e.  A  B C  =  sum_ x  e.  A  sum_ k  e.  B  C
) )
3126, 30imbi12d 233 . . . . 5  |-  ( u  =  A  ->  (
( u  C_  A  -> 
sum_ k  e.  U_  x  e.  u  B C  =  sum_ x  e.  u  sum_ k  e.  B  C )  <->  ( A  C_  A  ->  sum_ k  e. 
U_  x  e.  A  B C  =  sum_ x  e.  A  sum_ k  e.  B  C )
) )
3231imbi2d 229 . . . 4  |-  ( u  =  A  ->  (
( ph  ->  ( u 
C_  A  ->  sum_ k  e.  U_  x  e.  u  B C  =  sum_ x  e.  u  sum_ k  e.  B  C )
)  <->  ( ph  ->  ( A  C_  A  ->  sum_ k  e.  U_  x  e.  A  B C  =  sum_ x  e.  A  sum_ k  e.  B  C
) ) ) )
33 sum0 11157 . . . . . 6  |-  sum_ k  e.  (/)  C  =  0
34 sum0 11157 . . . . . 6  |-  sum_ x  e.  (/)  sum_ k  e.  B  C  =  0
3533, 34eqtr4i 2163 . . . . 5  |-  sum_ k  e.  (/)  C  =  sum_ x  e.  (/)  sum_ k  e.  B  C
36352a1i 27 . . . 4  |-  ( ph  ->  ( (/)  C_  A  ->  sum_ k  e.  (/)  C  = 
sum_ x  e.  (/)  sum_ k  e.  B  C )
)
37 id 19 . . . . . . . . 9  |-  ( ( z  u.  { w } )  C_  A  ->  ( z  u.  {
w } )  C_  A )
3837unssad 3253 . . . . . . . 8  |-  ( ( z  u.  { w } )  C_  A  ->  z  C_  A )
3938imim1i 60 . . . . . . 7  |-  ( ( z  C_  A  ->  sum_ k  e.  U_  x  e.  z  B C  =  sum_ x  e.  z 
sum_ k  e.  B  C )  ->  (
( z  u.  {
w } )  C_  A  ->  sum_ k  e.  U_  x  e.  z  B C  =  sum_ x  e.  z  sum_ k  e.  B  C ) )
40 oveq1 5781 . . . . . . . . . 10  |-  ( sum_ k  e.  U_  x  e.  z  B C  = 
sum_ x  e.  z  sum_ k  e.  B  C  ->  ( sum_ k  e.  U_  x  e.  z  B C  +  sum_ k  e. 
[_  w  /  x ]_ B C )  =  ( sum_ x  e.  z 
sum_ k  e.  B  C  +  sum_ k  e. 
[_  w  /  x ]_ B C ) )
41 nfcv 2281 . . . . . . . . . . . . . . . . 17  |-  F/_ z B
42 nfcsb1v 3035 . . . . . . . . . . . . . . . . 17  |-  F/_ x [_ z  /  x ]_ B
43 csbeq1a 3012 . . . . . . . . . . . . . . . . 17  |-  ( x  =  z  ->  B  =  [_ z  /  x ]_ B )
4441, 42, 43cbviun 3850 . . . . . . . . . . . . . . . 16  |-  U_ x  e.  { w } B  =  U_ z  e.  {
w } [_ z  /  x ]_ B
45 vex 2689 . . . . . . . . . . . . . . . . 17  |-  w  e. 
_V
46 csbeq1 3006 . . . . . . . . . . . . . . . . 17  |-  ( z  =  w  ->  [_ z  /  x ]_ B  = 
[_ w  /  x ]_ B )
4745, 46iunxsn 3889 . . . . . . . . . . . . . . . 16  |-  U_ z  e.  { w } [_ z  /  x ]_ B  =  [_ w  /  x ]_ B
4844, 47eqtri 2160 . . . . . . . . . . . . . . 15  |-  U_ x  e.  { w } B  =  [_ w  /  x ]_ B
4948ineq2i 3274 . . . . . . . . . . . . . 14  |-  ( U_ x  e.  z  B  i^i  U_ x  e.  {
w } B )  =  ( U_ x  e.  z  B  i^i  [_ w  /  x ]_ B )
50 fsumiun.3 . . . . . . . . . . . . . . . 16  |-  ( ph  -> Disj  x  e.  A  B
)
5150ad2antrr 479 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  -> Disj  x  e.  A  B )
5238adantl 275 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  z  C_  A )
53 simpr 109 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  (
z  u.  { w } )  C_  A
)
5453unssbd 3254 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  { w }  C_  A )
55 simplr 519 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  -.  w  e.  z )
56 disjsn 3585 . . . . . . . . . . . . . . . 16  |-  ( ( z  i^i  { w } )  =  (/)  <->  -.  w  e.  z )
5755, 56sylibr 133 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  (
z  i^i  { w } )  =  (/) )
58 disjiun 3924 . . . . . . . . . . . . . . 15  |-  ( (Disj  x  e.  A  B  /\  ( z  C_  A  /\  { w }  C_  A  /\  ( z  i^i 
{ w } )  =  (/) ) )  -> 
( U_ x  e.  z  B  i^i  U_ x  e.  { w } B
)  =  (/) )
5951, 52, 54, 57, 58syl13anc 1218 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  ( U_ x  e.  z  B  i^i  U_ x  e.  {
w } B )  =  (/) )
6049, 59syl5eqr 2186 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  ( U_ x  e.  z  B  i^i  [_ w  /  x ]_ B )  =  (/) )
6160adantlrl 473 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
z  e.  Fin  /\  -.  w  e.  z
) )  /\  (
z  u.  { w } )  C_  A
)  ->  ( U_ x  e.  z  B  i^i  [_ w  /  x ]_ B )  =  (/) )
62 iunxun 3892 . . . . . . . . . . . . . 14  |-  U_ x  e.  ( z  u.  {
w } ) B  =  ( U_ x  e.  z  B  u.  U_ x  e.  { w } B )
6348uneq2i 3227 . . . . . . . . . . . . . 14  |-  ( U_ x  e.  z  B  u.  U_ x  e.  {
w } B )  =  ( U_ x  e.  z  B  u.  [_ w  /  x ]_ B )
6462, 63eqtri 2160 . . . . . . . . . . . . 13  |-  U_ x  e.  ( z  u.  {
w } ) B  =  ( U_ x  e.  z  B  u.  [_ w  /  x ]_ B )
6564a1i 9 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
z  e.  Fin  /\  -.  w  e.  z
) )  /\  (
z  u.  { w } )  C_  A
)  ->  U_ x  e.  ( z  u.  {
w } ) B  =  ( U_ x  e.  z  B  u.  [_ w  /  x ]_ B ) )
66 simplrl 524 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
z  e.  Fin  /\  -.  w  e.  z
) )  /\  (
z  u.  { w } )  C_  A
)  ->  z  e.  Fin )
6745a1i 9 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
z  e.  Fin  /\  -.  w  e.  z
) )  /\  (
z  u.  { w } )  C_  A
)  ->  w  e.  _V )
6855adantlrl 473 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
z  e.  Fin  /\  -.  w  e.  z
) )  /\  (
z  u.  { w } )  C_  A
)  ->  -.  w  e.  z )
69 unsnfi 6807 . . . . . . . . . . . . . 14  |-  ( ( z  e.  Fin  /\  w  e.  _V  /\  -.  w  e.  z )  ->  ( z  u.  {
w } )  e. 
Fin )
7066, 67, 68, 69syl3anc 1216 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
z  e.  Fin  /\  -.  w  e.  z
) )  /\  (
z  u.  { w } )  C_  A
)  ->  ( z  u.  { w } )  e.  Fin )
71 fsumiun.2 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  Fin )
7271ralrimiva 2505 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A. x  e.  A  B  e.  Fin )
7372ad2antrr 479 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  A. x  e.  A  B  e.  Fin )
74 ssralv 3161 . . . . . . . . . . . . . . 15  |-  ( ( z  u.  { w } )  C_  A  ->  ( A. x  e.  A  B  e.  Fin  ->  A. x  e.  ( z  u.  { w } ) B  e. 
Fin ) )
7553, 73, 74sylc 62 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  A. x  e.  ( z  u.  {
w } ) B  e.  Fin )
7675adantlrl 473 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
z  e.  Fin  /\  -.  w  e.  z
) )  /\  (
z  u.  { w } )  C_  A
)  ->  A. x  e.  ( z  u.  {
w } ) B  e.  Fin )
77 disjss1 3912 . . . . . . . . . . . . . . 15  |-  ( ( z  u.  { w } )  C_  A  ->  (Disj  x  e.  A  B  -> Disj  x  e.  ( z  u.  { w }
) B ) )
7853, 51, 77sylc 62 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  -> Disj  x  e.  ( z  u.  {
w } ) B )
7978adantlrl 473 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
z  e.  Fin  /\  -.  w  e.  z
) )  /\  (
z  u.  { w } )  C_  A
)  -> Disj  x  e.  ( z  u.  { w } ) B )
80 iunfidisj 6834 . . . . . . . . . . . . 13  |-  ( ( ( z  u.  {
w } )  e. 
Fin  /\  A. x  e.  ( z  u.  {
w } ) B  e.  Fin  /\ Disj  x  e.  ( z  u.  {
w } ) B )  ->  U_ x  e.  ( z  u.  {
w } ) B  e.  Fin )
8170, 76, 79, 80syl3anc 1216 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
z  e.  Fin  /\  -.  w  e.  z
) )  /\  (
z  u.  { w } )  C_  A
)  ->  U_ x  e.  ( z  u.  {
w } ) B  e.  Fin )
82 iunss1 3824 . . . . . . . . . . . . . . 15  |-  ( ( z  u.  { w } )  C_  A  ->  U_ x  e.  ( z  u.  { w } ) B  C_  U_ x  e.  A  B
)
8382adantl 275 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
z  e.  Fin  /\  -.  w  e.  z
) )  /\  (
z  u.  { w } )  C_  A
)  ->  U_ x  e.  ( z  u.  {
w } ) B 
C_  U_ x  e.  A  B )
8483sselda 3097 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( z  e.  Fin  /\ 
-.  w  e.  z ) )  /\  (
z  u.  { w } )  C_  A
)  /\  k  e.  U_ x  e.  ( z  u.  { w }
) B )  -> 
k  e.  U_ x  e.  A  B )
85 eliun 3817 . . . . . . . . . . . . . . 15  |-  ( k  e.  U_ x  e.  A  B  <->  E. x  e.  A  k  e.  B )
86 fsumiun.4 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( x  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )
8786rexlimdvaa 2550 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( E. x  e.  A  k  e.  B  ->  C  e.  CC ) )
8887ad2antrr 479 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
z  e.  Fin  /\  -.  w  e.  z
) )  /\  (
z  u.  { w } )  C_  A
)  ->  ( E. x  e.  A  k  e.  B  ->  C  e.  CC ) )
8985, 88syl5bi 151 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
z  e.  Fin  /\  -.  w  e.  z
) )  /\  (
z  u.  { w } )  C_  A
)  ->  ( k  e.  U_ x  e.  A  B  ->  C  e.  CC ) )
9089imp 123 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( z  e.  Fin  /\ 
-.  w  e.  z ) )  /\  (
z  u.  { w } )  C_  A
)  /\  k  e.  U_ x  e.  A  B
)  ->  C  e.  CC )
9184, 90syldan 280 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( z  e.  Fin  /\ 
-.  w  e.  z ) )  /\  (
z  u.  { w } )  C_  A
)  /\  k  e.  U_ x  e.  ( z  u.  { w }
) B )  ->  C  e.  CC )
9261, 65, 81, 91fsumsplit 11176 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
z  e.  Fin  /\  -.  w  e.  z
) )  /\  (
z  u.  { w } )  C_  A
)  ->  sum_ k  e. 
U_  x  e.  ( z  u.  { w } ) B C  =  ( sum_ k  e.  U_  x  e.  z  B C  +  sum_ k  e.  [_  w  /  x ]_ B C ) )
9368, 56sylibr 133 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
z  e.  Fin  /\  -.  w  e.  z
) )  /\  (
z  u.  { w } )  C_  A
)  ->  ( z  i^i  { w } )  =  (/) )
94 eqidd 2140 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
z  e.  Fin  /\  -.  w  e.  z
) )  /\  (
z  u.  { w } )  C_  A
)  ->  ( z  u.  { w } )  =  ( z  u. 
{ w } ) )
95 simplr 519 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( z  e.  Fin  /\ 
-.  w  e.  z ) )  /\  (
z  u.  { w } )  C_  A
)  /\  x  e.  ( z  u.  {
w } ) )  ->  ( z  u. 
{ w } ) 
C_  A )
96 simpr 109 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( z  e.  Fin  /\ 
-.  w  e.  z ) )  /\  (
z  u.  { w } )  C_  A
)  /\  x  e.  ( z  u.  {
w } ) )  ->  x  e.  ( z  u.  { w } ) )
9795, 96sseldd 3098 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( z  e.  Fin  /\ 
-.  w  e.  z ) )  /\  (
z  u.  { w } )  C_  A
)  /\  x  e.  ( z  u.  {
w } ) )  ->  x  e.  A
)
9886anassrs 397 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  A )  /\  k  e.  B )  ->  C  e.  CC )
9971, 98fsumcl 11169 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  A )  ->  sum_ k  e.  B  C  e.  CC )
10099ralrimiva 2505 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A. x  e.  A  sum_ k  e.  B  C  e.  CC )
101100ad2antrr 479 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
z  e.  Fin  /\  -.  w  e.  z
) )  /\  (
z  u.  { w } )  C_  A
)  ->  A. x  e.  A  sum_ k  e.  B  C  e.  CC )
102101r19.21bi 2520 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( z  e.  Fin  /\ 
-.  w  e.  z ) )  /\  (
z  u.  { w } )  C_  A
)  /\  x  e.  A )  ->  sum_ k  e.  B  C  e.  CC )
10397, 102syldan 280 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( z  e.  Fin  /\ 
-.  w  e.  z ) )  /\  (
z  u.  { w } )  C_  A
)  /\  x  e.  ( z  u.  {
w } ) )  ->  sum_ k  e.  B  C  e.  CC )
10493, 94, 70, 103fsumsplit 11176 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
z  e.  Fin  /\  -.  w  e.  z
) )  /\  (
z  u.  { w } )  C_  A
)  ->  sum_ x  e.  ( z  u.  {
w } ) sum_ k  e.  B  C  =  ( sum_ x  e.  z  sum_ k  e.  B  C  +  sum_ x  e.  { w } sum_ k  e.  B  C
) )
105 nfcv 2281 . . . . . . . . . . . . . . . 16  |-  F/_ z sum_ k  e.  B  C
106 nfcv 2281 . . . . . . . . . . . . . . . . 17  |-  F/_ x C
10742, 106nfsum 11126 . . . . . . . . . . . . . . . 16  |-  F/_ x sum_ k  e.  [_  z  /  x ]_ B C
10843sumeq1d 11135 . . . . . . . . . . . . . . . 16  |-  ( x  =  z  ->  sum_ k  e.  B  C  =  sum_ k  e.  [_  z  /  x ]_ B C )
109105, 107, 108cbvsumi 11131 . . . . . . . . . . . . . . 15  |-  sum_ x  e.  { w } sum_ k  e.  B  C  =  sum_ z  e.  {
w } sum_ k  e.  [_  z  /  x ]_ B C
11045snss 3649 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  A  <->  { w }  C_  A )
11154, 110sylibr 133 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  w  e.  A )
112100ad2antrr 479 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  A. x  e.  A  sum_ k  e.  B  C  e.  CC )
113 nfcsb1v 3035 . . . . . . . . . . . . . . . . . . . 20  |-  F/_ x [_ w  /  x ]_ B
114113, 106nfsum 11126 . . . . . . . . . . . . . . . . . . 19  |-  F/_ x sum_ k  e.  [_  w  /  x ]_ B C
115114nfel1 2292 . . . . . . . . . . . . . . . . . 18  |-  F/ x sum_ k  e.  [_  w  /  x ]_ B C  e.  CC
116 csbeq1a 3012 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  w  ->  B  =  [_ w  /  x ]_ B )
117116sumeq1d 11135 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  w  ->  sum_ k  e.  B  C  =  sum_ k  e.  [_  w  /  x ]_ B C )
118117eleq1d 2208 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  w  ->  ( sum_ k  e.  B  C  e.  CC  <->  sum_ k  e.  [_  w  /  x ]_ B C  e.  CC )
)
119115, 118rspc 2783 . . . . . . . . . . . . . . . . 17  |-  ( w  e.  A  ->  ( A. x  e.  A  sum_ k  e.  B  C  e.  CC  ->  sum_ k  e. 
[_  w  /  x ]_ B C  e.  CC ) )
120111, 112, 119sylc 62 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  sum_ k  e.  [_  w  /  x ]_ B C  e.  CC )
12146sumeq1d 11135 . . . . . . . . . . . . . . . . 17  |-  ( z  =  w  ->  sum_ k  e.  [_  z  /  x ]_ B C  =  sum_ k  e.  [_  w  /  x ]_ B C )
122121sumsn 11180 . . . . . . . . . . . . . . . 16  |-  ( ( w  e.  _V  /\  sum_ k  e.  [_  w  /  x ]_ B C  e.  CC )  ->  sum_ z  e.  { w } sum_ k  e.  [_  z  /  x ]_ B C  =  sum_ k  e. 
[_  w  /  x ]_ B C )
12345, 120, 122sylancr 410 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  sum_ z  e.  { w } sum_ k  e.  [_  z  /  x ]_ B C  = 
sum_ k  e.  [_  w  /  x ]_ B C )
124109, 123syl5eq 2184 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  sum_ x  e.  { w } sum_ k  e.  B  C  =  sum_ k  e.  [_  w  /  x ]_ B C )
125124oveq2d 5790 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  ( sum_ x  e.  z  sum_ k  e.  B  C  +  sum_ x  e.  {
w } sum_ k  e.  B  C )  =  ( sum_ x  e.  z  sum_ k  e.  B  C  +  sum_ k  e.  [_  w  /  x ]_ B C ) )
126125adantlrl 473 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
z  e.  Fin  /\  -.  w  e.  z
) )  /\  (
z  u.  { w } )  C_  A
)  ->  ( sum_ x  e.  z  sum_ k  e.  B  C  +  sum_ x  e.  { w } sum_ k  e.  B  C )  =  (
sum_ x  e.  z  sum_ k  e.  B  C  +  sum_ k  e.  [_  w  /  x ]_ B C ) )
127104, 126eqtrd 2172 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
z  e.  Fin  /\  -.  w  e.  z
) )  /\  (
z  u.  { w } )  C_  A
)  ->  sum_ x  e.  ( z  u.  {
w } ) sum_ k  e.  B  C  =  ( sum_ x  e.  z  sum_ k  e.  B  C  +  sum_ k  e.  [_  w  /  x ]_ B C ) )
12892, 127eqeq12d 2154 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
z  e.  Fin  /\  -.  w  e.  z
) )  /\  (
z  u.  { w } )  C_  A
)  ->  ( sum_ k  e.  U_  x  e.  ( z  u.  {
w } ) B C  =  sum_ x  e.  ( z  u.  {
w } ) sum_ k  e.  B  C  <->  (
sum_ k  e.  U_  x  e.  z  B C  +  sum_ k  e. 
[_  w  /  x ]_ B C )  =  ( sum_ x  e.  z 
sum_ k  e.  B  C  +  sum_ k  e. 
[_  w  /  x ]_ B C ) ) )
12940, 128syl5ibr 155 . . . . . . . . 9  |-  ( ( ( ph  /\  (
z  e.  Fin  /\  -.  w  e.  z
) )  /\  (
z  u.  { w } )  C_  A
)  ->  ( sum_ k  e.  U_  x  e.  z  B C  = 
sum_ x  e.  z  sum_ k  e.  B  C  -> 
sum_ k  e.  U_  x  e.  ( z  u.  { w } ) B C  =  sum_ x  e.  ( z  u. 
{ w } )
sum_ k  e.  B  C ) )
130129ex 114 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  Fin  /\  -.  w  e.  z ) )  -> 
( ( z  u. 
{ w } ) 
C_  A  ->  ( sum_ k  e.  U_  x  e.  z  B C  =  sum_ x  e.  z 
sum_ k  e.  B  C  ->  sum_ k  e.  U_  x  e.  ( z  u.  { w } ) B C  =  sum_ x  e.  ( z  u. 
{ w } )
sum_ k  e.  B  C ) ) )
131130a2d 26 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  Fin  /\  -.  w  e.  z ) )  -> 
( ( ( z  u.  { w }
)  C_  A  ->  sum_ k  e.  U_  x  e.  z  B C  =  sum_ x  e.  z 
sum_ k  e.  B  C )  ->  (
( z  u.  {
w } )  C_  A  ->  sum_ k  e.  U_  x  e.  ( z  u.  { w } ) B C  =  sum_ x  e.  ( z  u. 
{ w } )
sum_ k  e.  B  C ) ) )
13239, 131syl5 32 . . . . . 6  |-  ( (
ph  /\  ( z  e.  Fin  /\  -.  w  e.  z ) )  -> 
( ( z  C_  A  ->  sum_ k  e.  U_  x  e.  z  B C  =  sum_ x  e.  z  sum_ k  e.  B  C )  ->  (
( z  u.  {
w } )  C_  A  ->  sum_ k  e.  U_  x  e.  ( z  u.  { w } ) B C  =  sum_ x  e.  ( z  u. 
{ w } )
sum_ k  e.  B  C ) ) )
133132expcom 115 . . . . 5  |-  ( ( z  e.  Fin  /\  -.  w  e.  z
)  ->  ( ph  ->  ( ( z  C_  A  ->  sum_ k  e.  U_  x  e.  z  B C  =  sum_ x  e.  z  sum_ k  e.  B  C )  ->  (
( z  u.  {
w } )  C_  A  ->  sum_ k  e.  U_  x  e.  ( z  u.  { w } ) B C  =  sum_ x  e.  ( z  u. 
{ w } )
sum_ k  e.  B  C ) ) ) )
134133a2d 26 . . . 4  |-  ( ( z  e.  Fin  /\  -.  w  e.  z
)  ->  ( ( ph  ->  ( z  C_  A  ->  sum_ k  e.  U_  x  e.  z  B C  =  sum_ x  e.  z  sum_ k  e.  B  C ) )  -> 
( ph  ->  ( ( z  u.  { w } )  C_  A  -> 
sum_ k  e.  U_  x  e.  ( z  u.  { w } ) B C  =  sum_ x  e.  ( z  u. 
{ w } )
sum_ k  e.  B  C ) ) ) )
13511, 18, 25, 32, 36, 134findcard2s 6784 . . 3  |-  ( A  e.  Fin  ->  ( ph  ->  ( A  C_  A  ->  sum_ k  e.  U_  x  e.  A  B C  =  sum_ x  e.  A  sum_ k  e.  B  C ) ) )
1362, 135mpcom 36 . 2  |-  ( ph  ->  ( A  C_  A  -> 
sum_ k  e.  U_  x  e.  A  B C  =  sum_ x  e.  A  sum_ k  e.  B  C ) )
1371, 136mpi 15 1  |-  ( ph  -> 
sum_ k  e.  U_  x  e.  A  B C  =  sum_ x  e.  A  sum_ k  e.  B  C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   A.wral 2416   E.wrex 2417   _Vcvv 2686   [_csb 3003    u. cun 3069    i^i cin 3070    C_ wss 3071   (/)c0 3363   {csn 3527   U_ciun 3813  Disj wdisj 3906  (class class class)co 5774   Fincfn 6634   CCcc 7618   0cc0 7620    + caddc 7623   sum_csu 11122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-disj 3907  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-fz 9791  df-fzo 9920  df-seqfrec 10219  df-exp 10293  df-ihash 10522  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-clim 11048  df-sumdc 11123
This theorem is referenced by:  hashiun  11247
  Copyright terms: Public domain W3C validator