ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprod2d Unicode version

Theorem fprod2d 11766
Description: Write a double product as a product over a two-dimensional region. Compare fsum2d 11578. (Contributed by Scott Fenton, 30-Jan-2018.)
Hypotheses
Ref Expression
fprod2d.1  |-  ( z  =  <. j ,  k
>.  ->  D  =  C )
fprod2d.2  |-  ( ph  ->  A  e.  Fin )
fprod2d.3  |-  ( (
ph  /\  j  e.  A )  ->  B  e.  Fin )
fprod2d.4  |-  ( (
ph  /\  ( j  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )
Assertion
Ref Expression
fprod2d  |-  ( ph  ->  prod_ j  e.  A  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D )
Distinct variable groups:    A, j, k, z    B, k, z    z, C    D, j, k    ph, j,
k, z
Allowed substitution hints:    B( j)    C( j, k)    D( z)

Proof of Theorem fprod2d
Dummy variables  w  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3199 . 2  |-  A  C_  A
2 fprod2d.2 . . 3  |-  ( ph  ->  A  e.  Fin )
3 sseq1 3202 . . . . . 6  |-  ( w  =  (/)  ->  ( w 
C_  A  <->  (/)  C_  A
) )
4 prodeq1 11696 . . . . . . 7  |-  ( w  =  (/)  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ j  e.  (/)  prod_ k  e.  B  C )
5 iuneq1 3925 . . . . . . . . 9  |-  ( w  =  (/)  ->  U_ j  e.  w  ( {
j }  X.  B
)  =  U_ j  e.  (/)  ( { j }  X.  B ) )
6 0iun 3970 . . . . . . . . 9  |-  U_ j  e.  (/)  ( { j }  X.  B )  =  (/)
75, 6eqtrdi 2242 . . . . . . . 8  |-  ( w  =  (/)  ->  U_ j  e.  w  ( {
j }  X.  B
)  =  (/) )
87prodeq1d 11707 . . . . . . 7  |-  ( w  =  (/)  ->  prod_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D  = 
prod_ z  e.  (/)  D )
94, 8eqeq12d 2208 . . . . . 6  |-  ( w  =  (/)  ->  ( prod_
j  e.  w  prod_ k  e.  B  C  = 
prod_ z  e.  U_  j  e.  w  ( {
j }  X.  B
) D  <->  prod_ j  e.  (/)  prod_ k  e.  B  C  =  prod_ z  e.  (/)  D ) )
103, 9imbi12d 234 . . . . 5  |-  ( w  =  (/)  ->  ( ( w  C_  A  ->  prod_
j  e.  w  prod_ k  e.  B  C  = 
prod_ z  e.  U_  j  e.  w  ( {
j }  X.  B
) D )  <->  ( (/)  C_  A  ->  prod_ j  e.  (/)  prod_
k  e.  B  C  =  prod_ z  e.  (/)  D ) ) )
1110imbi2d 230 . . . 4  |-  ( w  =  (/)  ->  ( (
ph  ->  ( w  C_  A  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D ) )  <->  ( ph  ->  (
(/)  C_  A  ->  prod_ j  e.  (/)  prod_ k  e.  B  C  =  prod_ z  e.  (/)  D ) ) ) )
12 sseq1 3202 . . . . . 6  |-  ( w  =  x  ->  (
w  C_  A  <->  x  C_  A
) )
13 prodeq1 11696 . . . . . . 7  |-  ( w  =  x  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ j  e.  x  prod_ k  e.  B  C )
14 iuneq1 3925 . . . . . . . 8  |-  ( w  =  x  ->  U_ j  e.  w  ( {
j }  X.  B
)  =  U_ j  e.  x  ( {
j }  X.  B
) )
1514prodeq1d 11707 . . . . . . 7  |-  ( w  =  x  ->  prod_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D  =  prod_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D )
1613, 15eqeq12d 2208 . . . . . 6  |-  ( w  =  x  ->  ( prod_ j  e.  w  prod_ k  e.  B  C  = 
prod_ z  e.  U_  j  e.  w  ( {
j }  X.  B
) D  <->  prod_ j  e.  x  prod_ k  e.  B  C  =  prod_ z  e. 
U_  j  e.  x  ( { j }  X.  B ) D ) )
1712, 16imbi12d 234 . . . . 5  |-  ( w  =  x  ->  (
( w  C_  A  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D )  <-> 
( x  C_  A  ->  prod_ j  e.  x  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D ) ) )
1817imbi2d 230 . . . 4  |-  ( w  =  x  ->  (
( ph  ->  ( w 
C_  A  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  w  ( {
j }  X.  B
) D ) )  <-> 
( ph  ->  ( x 
C_  A  ->  prod_ j  e.  x  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  x  ( {
j }  X.  B
) D ) ) ) )
19 sseq1 3202 . . . . . 6  |-  ( w  =  ( x  u. 
{ y } )  ->  ( w  C_  A 
<->  ( x  u.  {
y } )  C_  A ) )
20 prodeq1 11696 . . . . . . 7  |-  ( w  =  ( x  u. 
{ y } )  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ j  e.  ( x  u.  { y } ) prod_ k  e.  B  C )
21 iuneq1 3925 . . . . . . . 8  |-  ( w  =  ( x  u. 
{ y } )  ->  U_ j  e.  w  ( { j }  X.  B )  =  U_ j  e.  ( x  u.  { y } ) ( { j }  X.  B ) )
2221prodeq1d 11707 . . . . . . 7  |-  ( w  =  ( x  u. 
{ y } )  ->  prod_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D  = 
prod_ z  e.  U_  j  e.  ( x  u.  {
y } ) ( { j }  X.  B ) D )
2320, 22eqeq12d 2208 . . . . . 6  |-  ( w  =  ( x  u. 
{ y } )  ->  ( prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D  <->  prod_ j  e.  ( x  u.  { y } ) prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  ( x  u.  {
y } ) ( { j }  X.  B ) D ) )
2419, 23imbi12d 234 . . . . 5  |-  ( w  =  ( x  u. 
{ y } )  ->  ( ( w 
C_  A  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  w  ( {
j }  X.  B
) D )  <->  ( (
x  u.  { y } )  C_  A  ->  prod_ j  e.  ( x  u.  { y } ) prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  ( x  u.  {
y } ) ( { j }  X.  B ) D ) ) )
2524imbi2d 230 . . . 4  |-  ( w  =  ( x  u. 
{ y } )  ->  ( ( ph  ->  ( w  C_  A  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D ) )  <->  ( ph  ->  ( ( x  u.  {
y } )  C_  A  ->  prod_ j  e.  ( x  u.  { y } ) prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  ( x  u.  {
y } ) ( { j }  X.  B ) D ) ) ) )
26 sseq1 3202 . . . . . 6  |-  ( w  =  A  ->  (
w  C_  A  <->  A  C_  A
) )
27 prodeq1 11696 . . . . . . 7  |-  ( w  =  A  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ j  e.  A  prod_ k  e.  B  C )
28 iuneq1 3925 . . . . . . . 8  |-  ( w  =  A  ->  U_ j  e.  w  ( {
j }  X.  B
)  =  U_ j  e.  A  ( {
j }  X.  B
) )
2928prodeq1d 11707 . . . . . . 7  |-  ( w  =  A  ->  prod_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D  =  prod_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D )
3027, 29eqeq12d 2208 . . . . . 6  |-  ( w  =  A  ->  ( prod_ j  e.  w  prod_ k  e.  B  C  = 
prod_ z  e.  U_  j  e.  w  ( {
j }  X.  B
) D  <->  prod_ j  e.  A  prod_ k  e.  B  C  =  prod_ z  e. 
U_  j  e.  A  ( { j }  X.  B ) D ) )
3126, 30imbi12d 234 . . . . 5  |-  ( w  =  A  ->  (
( w  C_  A  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D )  <-> 
( A  C_  A  ->  prod_ j  e.  A  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D ) ) )
3231imbi2d 230 . . . 4  |-  ( w  =  A  ->  (
( ph  ->  ( w 
C_  A  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  w  ( {
j }  X.  B
) D ) )  <-> 
( ph  ->  ( A 
C_  A  ->  prod_ j  e.  A  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  A  ( {
j }  X.  B
) D ) ) ) )
33 prod0 11728 . . . . . 6  |-  prod_ j  e.  (/)  prod_ k  e.  B  C  =  1
34 prod0 11728 . . . . . 6  |-  prod_ z  e.  (/)  D  =  1
3533, 34eqtr4i 2217 . . . . 5  |-  prod_ j  e.  (/)  prod_ k  e.  B  C  =  prod_ z  e.  (/)  D
36352a1i 27 . . . 4  |-  ( ph  ->  ( (/)  C_  A  ->  prod_ j  e.  (/)  prod_ k  e.  B  C  =  prod_ z  e.  (/)  D ) )
37 ssun1 3322 . . . . . . . . 9  |-  x  C_  ( x  u.  { y } )
38 sstr 3187 . . . . . . . . 9  |-  ( ( x  C_  ( x  u.  { y } )  /\  ( x  u. 
{ y } ) 
C_  A )  ->  x  C_  A )
3937, 38mpan 424 . . . . . . . 8  |-  ( ( x  u.  { y } )  C_  A  ->  x  C_  A )
4039imim1i 60 . . . . . . 7  |-  ( ( x  C_  A  ->  prod_
j  e.  x  prod_ k  e.  B  C  = 
prod_ z  e.  U_  j  e.  x  ( {
j }  X.  B
) D )  -> 
( ( x  u. 
{ y } ) 
C_  A  ->  prod_ j  e.  x  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  x  ( {
j }  X.  B
) D ) )
41 fprod2d.1 . . . . . . . . . 10  |-  ( z  =  <. j ,  k
>.  ->  D  =  C )
422ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  Fin  /\  -.  y  e.  x
) )  /\  (
x  u.  { y } )  C_  A
)  ->  A  e.  Fin )
43 fprod2d.3 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  A )  ->  B  e.  Fin )
4443ad4ant14 514 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  Fin  /\ 
-.  y  e.  x
) )  /\  (
x  u.  { y } )  C_  A
)  /\  j  e.  A )  ->  B  e.  Fin )
45 fprod2d.4 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )
4645ad4ant14 514 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  Fin  /\ 
-.  y  e.  x
) )  /\  (
x  u.  { y } )  C_  A
)  /\  ( j  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )
47 simplrr 536 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  Fin  /\  -.  y  e.  x
) )  /\  (
x  u.  { y } )  C_  A
)  ->  -.  y  e.  x )
48 simpr 110 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  Fin  /\  -.  y  e.  x
) )  /\  (
x  u.  { y } )  C_  A
)  ->  ( x  u.  { y } ) 
C_  A )
49 simplrl 535 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  Fin  /\  -.  y  e.  x
) )  /\  (
x  u.  { y } )  C_  A
)  ->  x  e.  Fin )
50 biid 171 . . . . . . . . . 10  |-  ( prod_
j  e.  x  prod_ k  e.  B  C  = 
prod_ z  e.  U_  j  e.  x  ( {
j }  X.  B
) D  <->  prod_ j  e.  x  prod_ k  e.  B  C  =  prod_ z  e. 
U_  j  e.  x  ( { j }  X.  B ) D )
5141, 42, 44, 46, 47, 48, 49, 50fprod2dlemstep 11765 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( x  e.  Fin  /\ 
-.  y  e.  x
) )  /\  (
x  u.  { y } )  C_  A
)  /\  prod_ j  e.  x  prod_ k  e.  B  C  =  prod_ z  e. 
U_  j  e.  x  ( { j }  X.  B ) D )  ->  prod_ j  e.  ( x  u.  { y } ) prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  ( x  u.  {
y } ) ( { j }  X.  B ) D )
5251exp31 364 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Fin  /\  -.  y  e.  x ) )  -> 
( ( x  u. 
{ y } ) 
C_  A  ->  ( prod_ j  e.  x  prod_ k  e.  B  C  = 
prod_ z  e.  U_  j  e.  x  ( {
j }  X.  B
) D  ->  prod_ j  e.  ( x  u. 
{ y } )
prod_ k  e.  B  C  =  prod_ z  e. 
U_  j  e.  ( x  u.  { y } ) ( { j }  X.  B
) D ) ) )
5352a2d 26 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  Fin  /\  -.  y  e.  x ) )  -> 
( ( ( x  u.  { y } )  C_  A  ->  prod_
j  e.  x  prod_ k  e.  B  C  = 
prod_ z  e.  U_  j  e.  x  ( {
j }  X.  B
) D )  -> 
( ( x  u. 
{ y } ) 
C_  A  ->  prod_ j  e.  ( x  u. 
{ y } )
prod_ k  e.  B  C  =  prod_ z  e. 
U_  j  e.  ( x  u.  { y } ) ( { j }  X.  B
) D ) ) )
5440, 53syl5 32 . . . . . 6  |-  ( (
ph  /\  ( x  e.  Fin  /\  -.  y  e.  x ) )  -> 
( ( x  C_  A  ->  prod_ j  e.  x  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D )  ->  ( ( x  u.  { y } )  C_  A  ->  prod_
j  e.  ( x  u.  { y } ) prod_ k  e.  B  C  =  prod_ z  e. 
U_  j  e.  ( x  u.  { y } ) ( { j }  X.  B
) D ) ) )
5554expcom 116 . . . . 5  |-  ( ( x  e.  Fin  /\  -.  y  e.  x
)  ->  ( ph  ->  ( ( x  C_  A  ->  prod_ j  e.  x  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D )  ->  ( ( x  u.  { y } )  C_  A  ->  prod_
j  e.  ( x  u.  { y } ) prod_ k  e.  B  C  =  prod_ z  e. 
U_  j  e.  ( x  u.  { y } ) ( { j }  X.  B
) D ) ) ) )
5655a2d 26 . . . 4  |-  ( ( x  e.  Fin  /\  -.  y  e.  x
)  ->  ( ( ph  ->  ( x  C_  A  ->  prod_ j  e.  x  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D ) )  ->  ( ph  ->  ( ( x  u. 
{ y } ) 
C_  A  ->  prod_ j  e.  ( x  u. 
{ y } )
prod_ k  e.  B  C  =  prod_ z  e. 
U_  j  e.  ( x  u.  { y } ) ( { j }  X.  B
) D ) ) ) )
5711, 18, 25, 32, 36, 56findcard2s 6946 . . 3  |-  ( A  e.  Fin  ->  ( ph  ->  ( A  C_  A  ->  prod_ j  e.  A  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D ) ) )
582, 57mpcom 36 . 2  |-  ( ph  ->  ( A  C_  A  ->  prod_ j  e.  A  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D ) )
591, 58mpi 15 1  |-  ( ph  ->  prod_ j  e.  A  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164    u. cun 3151    C_ wss 3153   (/)c0 3446   {csn 3618   <.cop 3621   U_ciun 3912    X. cxp 4657   Fincfn 6794   CCcc 7870   1c1 7873   prod_cprod 11693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-disj 4007  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-exp 10610  df-ihash 10847  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-proddc 11694
This theorem is referenced by:  fprodxp  11767  fprodcom2fi  11769
  Copyright terms: Public domain W3C validator