ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprod2d Unicode version

Theorem fprod2d 12134
Description: Write a double product as a product over a two-dimensional region. Compare fsum2d 11946. (Contributed by Scott Fenton, 30-Jan-2018.)
Hypotheses
Ref Expression
fprod2d.1  |-  ( z  =  <. j ,  k
>.  ->  D  =  C )
fprod2d.2  |-  ( ph  ->  A  e.  Fin )
fprod2d.3  |-  ( (
ph  /\  j  e.  A )  ->  B  e.  Fin )
fprod2d.4  |-  ( (
ph  /\  ( j  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )
Assertion
Ref Expression
fprod2d  |-  ( ph  ->  prod_ j  e.  A  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D )
Distinct variable groups:    A, j, k, z    B, k, z    z, C    D, j, k    ph, j,
k, z
Allowed substitution hints:    B( j)    C( j, k)    D( z)

Proof of Theorem fprod2d
Dummy variables  w  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3244 . 2  |-  A  C_  A
2 fprod2d.2 . . 3  |-  ( ph  ->  A  e.  Fin )
3 sseq1 3247 . . . . . 6  |-  ( w  =  (/)  ->  ( w 
C_  A  <->  (/)  C_  A
) )
4 prodeq1 12064 . . . . . . 7  |-  ( w  =  (/)  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ j  e.  (/)  prod_ k  e.  B  C )
5 iuneq1 3978 . . . . . . . . 9  |-  ( w  =  (/)  ->  U_ j  e.  w  ( {
j }  X.  B
)  =  U_ j  e.  (/)  ( { j }  X.  B ) )
6 0iun 4023 . . . . . . . . 9  |-  U_ j  e.  (/)  ( { j }  X.  B )  =  (/)
75, 6eqtrdi 2278 . . . . . . . 8  |-  ( w  =  (/)  ->  U_ j  e.  w  ( {
j }  X.  B
)  =  (/) )
87prodeq1d 12075 . . . . . . 7  |-  ( w  =  (/)  ->  prod_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D  = 
prod_ z  e.  (/)  D )
94, 8eqeq12d 2244 . . . . . 6  |-  ( w  =  (/)  ->  ( prod_
j  e.  w  prod_ k  e.  B  C  = 
prod_ z  e.  U_  j  e.  w  ( {
j }  X.  B
) D  <->  prod_ j  e.  (/)  prod_ k  e.  B  C  =  prod_ z  e.  (/)  D ) )
103, 9imbi12d 234 . . . . 5  |-  ( w  =  (/)  ->  ( ( w  C_  A  ->  prod_
j  e.  w  prod_ k  e.  B  C  = 
prod_ z  e.  U_  j  e.  w  ( {
j }  X.  B
) D )  <->  ( (/)  C_  A  ->  prod_ j  e.  (/)  prod_
k  e.  B  C  =  prod_ z  e.  (/)  D ) ) )
1110imbi2d 230 . . . 4  |-  ( w  =  (/)  ->  ( (
ph  ->  ( w  C_  A  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D ) )  <->  ( ph  ->  (
(/)  C_  A  ->  prod_ j  e.  (/)  prod_ k  e.  B  C  =  prod_ z  e.  (/)  D ) ) ) )
12 sseq1 3247 . . . . . 6  |-  ( w  =  x  ->  (
w  C_  A  <->  x  C_  A
) )
13 prodeq1 12064 . . . . . . 7  |-  ( w  =  x  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ j  e.  x  prod_ k  e.  B  C )
14 iuneq1 3978 . . . . . . . 8  |-  ( w  =  x  ->  U_ j  e.  w  ( {
j }  X.  B
)  =  U_ j  e.  x  ( {
j }  X.  B
) )
1514prodeq1d 12075 . . . . . . 7  |-  ( w  =  x  ->  prod_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D  =  prod_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D )
1613, 15eqeq12d 2244 . . . . . 6  |-  ( w  =  x  ->  ( prod_ j  e.  w  prod_ k  e.  B  C  = 
prod_ z  e.  U_  j  e.  w  ( {
j }  X.  B
) D  <->  prod_ j  e.  x  prod_ k  e.  B  C  =  prod_ z  e. 
U_  j  e.  x  ( { j }  X.  B ) D ) )
1712, 16imbi12d 234 . . . . 5  |-  ( w  =  x  ->  (
( w  C_  A  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D )  <-> 
( x  C_  A  ->  prod_ j  e.  x  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D ) ) )
1817imbi2d 230 . . . 4  |-  ( w  =  x  ->  (
( ph  ->  ( w 
C_  A  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  w  ( {
j }  X.  B
) D ) )  <-> 
( ph  ->  ( x 
C_  A  ->  prod_ j  e.  x  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  x  ( {
j }  X.  B
) D ) ) ) )
19 sseq1 3247 . . . . . 6  |-  ( w  =  ( x  u. 
{ y } )  ->  ( w  C_  A 
<->  ( x  u.  {
y } )  C_  A ) )
20 prodeq1 12064 . . . . . . 7  |-  ( w  =  ( x  u. 
{ y } )  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ j  e.  ( x  u.  { y } ) prod_ k  e.  B  C )
21 iuneq1 3978 . . . . . . . 8  |-  ( w  =  ( x  u. 
{ y } )  ->  U_ j  e.  w  ( { j }  X.  B )  =  U_ j  e.  ( x  u.  { y } ) ( { j }  X.  B ) )
2221prodeq1d 12075 . . . . . . 7  |-  ( w  =  ( x  u. 
{ y } )  ->  prod_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D  = 
prod_ z  e.  U_  j  e.  ( x  u.  {
y } ) ( { j }  X.  B ) D )
2320, 22eqeq12d 2244 . . . . . 6  |-  ( w  =  ( x  u. 
{ y } )  ->  ( prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D  <->  prod_ j  e.  ( x  u.  { y } ) prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  ( x  u.  {
y } ) ( { j }  X.  B ) D ) )
2419, 23imbi12d 234 . . . . 5  |-  ( w  =  ( x  u. 
{ y } )  ->  ( ( w 
C_  A  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  w  ( {
j }  X.  B
) D )  <->  ( (
x  u.  { y } )  C_  A  ->  prod_ j  e.  ( x  u.  { y } ) prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  ( x  u.  {
y } ) ( { j }  X.  B ) D ) ) )
2524imbi2d 230 . . . 4  |-  ( w  =  ( x  u. 
{ y } )  ->  ( ( ph  ->  ( w  C_  A  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D ) )  <->  ( ph  ->  ( ( x  u.  {
y } )  C_  A  ->  prod_ j  e.  ( x  u.  { y } ) prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  ( x  u.  {
y } ) ( { j }  X.  B ) D ) ) ) )
26 sseq1 3247 . . . . . 6  |-  ( w  =  A  ->  (
w  C_  A  <->  A  C_  A
) )
27 prodeq1 12064 . . . . . . 7  |-  ( w  =  A  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ j  e.  A  prod_ k  e.  B  C )
28 iuneq1 3978 . . . . . . . 8  |-  ( w  =  A  ->  U_ j  e.  w  ( {
j }  X.  B
)  =  U_ j  e.  A  ( {
j }  X.  B
) )
2928prodeq1d 12075 . . . . . . 7  |-  ( w  =  A  ->  prod_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D  =  prod_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D )
3027, 29eqeq12d 2244 . . . . . 6  |-  ( w  =  A  ->  ( prod_ j  e.  w  prod_ k  e.  B  C  = 
prod_ z  e.  U_  j  e.  w  ( {
j }  X.  B
) D  <->  prod_ j  e.  A  prod_ k  e.  B  C  =  prod_ z  e. 
U_  j  e.  A  ( { j }  X.  B ) D ) )
3126, 30imbi12d 234 . . . . 5  |-  ( w  =  A  ->  (
( w  C_  A  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D )  <-> 
( A  C_  A  ->  prod_ j  e.  A  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D ) ) )
3231imbi2d 230 . . . 4  |-  ( w  =  A  ->  (
( ph  ->  ( w 
C_  A  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  w  ( {
j }  X.  B
) D ) )  <-> 
( ph  ->  ( A 
C_  A  ->  prod_ j  e.  A  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  A  ( {
j }  X.  B
) D ) ) ) )
33 prod0 12096 . . . . . 6  |-  prod_ j  e.  (/)  prod_ k  e.  B  C  =  1
34 prod0 12096 . . . . . 6  |-  prod_ z  e.  (/)  D  =  1
3533, 34eqtr4i 2253 . . . . 5  |-  prod_ j  e.  (/)  prod_ k  e.  B  C  =  prod_ z  e.  (/)  D
36352a1i 27 . . . 4  |-  ( ph  ->  ( (/)  C_  A  ->  prod_ j  e.  (/)  prod_ k  e.  B  C  =  prod_ z  e.  (/)  D ) )
37 ssun1 3367 . . . . . . . . 9  |-  x  C_  ( x  u.  { y } )
38 sstr 3232 . . . . . . . . 9  |-  ( ( x  C_  ( x  u.  { y } )  /\  ( x  u. 
{ y } ) 
C_  A )  ->  x  C_  A )
3937, 38mpan 424 . . . . . . . 8  |-  ( ( x  u.  { y } )  C_  A  ->  x  C_  A )
4039imim1i 60 . . . . . . 7  |-  ( ( x  C_  A  ->  prod_
j  e.  x  prod_ k  e.  B  C  = 
prod_ z  e.  U_  j  e.  x  ( {
j }  X.  B
) D )  -> 
( ( x  u. 
{ y } ) 
C_  A  ->  prod_ j  e.  x  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  x  ( {
j }  X.  B
) D ) )
41 fprod2d.1 . . . . . . . . . 10  |-  ( z  =  <. j ,  k
>.  ->  D  =  C )
422ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  Fin  /\  -.  y  e.  x
) )  /\  (
x  u.  { y } )  C_  A
)  ->  A  e.  Fin )
43 fprod2d.3 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  A )  ->  B  e.  Fin )
4443ad4ant14 514 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  Fin  /\ 
-.  y  e.  x
) )  /\  (
x  u.  { y } )  C_  A
)  /\  j  e.  A )  ->  B  e.  Fin )
45 fprod2d.4 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )
4645ad4ant14 514 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  Fin  /\ 
-.  y  e.  x
) )  /\  (
x  u.  { y } )  C_  A
)  /\  ( j  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )
47 simplrr 536 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  Fin  /\  -.  y  e.  x
) )  /\  (
x  u.  { y } )  C_  A
)  ->  -.  y  e.  x )
48 simpr 110 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  Fin  /\  -.  y  e.  x
) )  /\  (
x  u.  { y } )  C_  A
)  ->  ( x  u.  { y } ) 
C_  A )
49 simplrl 535 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  Fin  /\  -.  y  e.  x
) )  /\  (
x  u.  { y } )  C_  A
)  ->  x  e.  Fin )
50 biid 171 . . . . . . . . . 10  |-  ( prod_
j  e.  x  prod_ k  e.  B  C  = 
prod_ z  e.  U_  j  e.  x  ( {
j }  X.  B
) D  <->  prod_ j  e.  x  prod_ k  e.  B  C  =  prod_ z  e. 
U_  j  e.  x  ( { j }  X.  B ) D )
5141, 42, 44, 46, 47, 48, 49, 50fprod2dlemstep 12133 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( x  e.  Fin  /\ 
-.  y  e.  x
) )  /\  (
x  u.  { y } )  C_  A
)  /\  prod_ j  e.  x  prod_ k  e.  B  C  =  prod_ z  e. 
U_  j  e.  x  ( { j }  X.  B ) D )  ->  prod_ j  e.  ( x  u.  { y } ) prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  ( x  u.  {
y } ) ( { j }  X.  B ) D )
5251exp31 364 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Fin  /\  -.  y  e.  x ) )  -> 
( ( x  u. 
{ y } ) 
C_  A  ->  ( prod_ j  e.  x  prod_ k  e.  B  C  = 
prod_ z  e.  U_  j  e.  x  ( {
j }  X.  B
) D  ->  prod_ j  e.  ( x  u. 
{ y } )
prod_ k  e.  B  C  =  prod_ z  e. 
U_  j  e.  ( x  u.  { y } ) ( { j }  X.  B
) D ) ) )
5352a2d 26 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  Fin  /\  -.  y  e.  x ) )  -> 
( ( ( x  u.  { y } )  C_  A  ->  prod_
j  e.  x  prod_ k  e.  B  C  = 
prod_ z  e.  U_  j  e.  x  ( {
j }  X.  B
) D )  -> 
( ( x  u. 
{ y } ) 
C_  A  ->  prod_ j  e.  ( x  u. 
{ y } )
prod_ k  e.  B  C  =  prod_ z  e. 
U_  j  e.  ( x  u.  { y } ) ( { j }  X.  B
) D ) ) )
5440, 53syl5 32 . . . . . 6  |-  ( (
ph  /\  ( x  e.  Fin  /\  -.  y  e.  x ) )  -> 
( ( x  C_  A  ->  prod_ j  e.  x  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D )  ->  ( ( x  u.  { y } )  C_  A  ->  prod_
j  e.  ( x  u.  { y } ) prod_ k  e.  B  C  =  prod_ z  e. 
U_  j  e.  ( x  u.  { y } ) ( { j }  X.  B
) D ) ) )
5554expcom 116 . . . . 5  |-  ( ( x  e.  Fin  /\  -.  y  e.  x
)  ->  ( ph  ->  ( ( x  C_  A  ->  prod_ j  e.  x  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D )  ->  ( ( x  u.  { y } )  C_  A  ->  prod_
j  e.  ( x  u.  { y } ) prod_ k  e.  B  C  =  prod_ z  e. 
U_  j  e.  ( x  u.  { y } ) ( { j }  X.  B
) D ) ) ) )
5655a2d 26 . . . 4  |-  ( ( x  e.  Fin  /\  -.  y  e.  x
)  ->  ( ( ph  ->  ( x  C_  A  ->  prod_ j  e.  x  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D ) )  ->  ( ph  ->  ( ( x  u. 
{ y } ) 
C_  A  ->  prod_ j  e.  ( x  u. 
{ y } )
prod_ k  e.  B  C  =  prod_ z  e. 
U_  j  e.  ( x  u.  { y } ) ( { j }  X.  B
) D ) ) ) )
5711, 18, 25, 32, 36, 56findcard2s 7052 . . 3  |-  ( A  e.  Fin  ->  ( ph  ->  ( A  C_  A  ->  prod_ j  e.  A  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D ) ) )
582, 57mpcom 36 . 2  |-  ( ph  ->  ( A  C_  A  ->  prod_ j  e.  A  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D ) )
591, 58mpi 15 1  |-  ( ph  ->  prod_ j  e.  A  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200    u. cun 3195    C_ wss 3197   (/)c0 3491   {csn 3666   <.cop 3669   U_ciun 3965    X. cxp 4717   Fincfn 6887   CCcc 7997   1c1 8000   prod_cprod 12061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-disj 4060  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-frec 6537  df-1o 6562  df-oadd 6566  df-er 6680  df-en 6888  df-dom 6889  df-fin 6890  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-fz 10205  df-fzo 10339  df-seqfrec 10670  df-exp 10761  df-ihash 10998  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-clim 11790  df-proddc 12062
This theorem is referenced by:  fprodxp  12135  fprodcom2fi  12137
  Copyright terms: Public domain W3C validator