ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprod2d Unicode version

Theorem fprod2d 11934
Description: Write a double product as a product over a two-dimensional region. Compare fsum2d 11746. (Contributed by Scott Fenton, 30-Jan-2018.)
Hypotheses
Ref Expression
fprod2d.1  |-  ( z  =  <. j ,  k
>.  ->  D  =  C )
fprod2d.2  |-  ( ph  ->  A  e.  Fin )
fprod2d.3  |-  ( (
ph  /\  j  e.  A )  ->  B  e.  Fin )
fprod2d.4  |-  ( (
ph  /\  ( j  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )
Assertion
Ref Expression
fprod2d  |-  ( ph  ->  prod_ j  e.  A  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D )
Distinct variable groups:    A, j, k, z    B, k, z    z, C    D, j, k    ph, j,
k, z
Allowed substitution hints:    B( j)    C( j, k)    D( z)

Proof of Theorem fprod2d
Dummy variables  w  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3213 . 2  |-  A  C_  A
2 fprod2d.2 . . 3  |-  ( ph  ->  A  e.  Fin )
3 sseq1 3216 . . . . . 6  |-  ( w  =  (/)  ->  ( w 
C_  A  <->  (/)  C_  A
) )
4 prodeq1 11864 . . . . . . 7  |-  ( w  =  (/)  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ j  e.  (/)  prod_ k  e.  B  C )
5 iuneq1 3940 . . . . . . . . 9  |-  ( w  =  (/)  ->  U_ j  e.  w  ( {
j }  X.  B
)  =  U_ j  e.  (/)  ( { j }  X.  B ) )
6 0iun 3985 . . . . . . . . 9  |-  U_ j  e.  (/)  ( { j }  X.  B )  =  (/)
75, 6eqtrdi 2254 . . . . . . . 8  |-  ( w  =  (/)  ->  U_ j  e.  w  ( {
j }  X.  B
)  =  (/) )
87prodeq1d 11875 . . . . . . 7  |-  ( w  =  (/)  ->  prod_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D  = 
prod_ z  e.  (/)  D )
94, 8eqeq12d 2220 . . . . . 6  |-  ( w  =  (/)  ->  ( prod_
j  e.  w  prod_ k  e.  B  C  = 
prod_ z  e.  U_  j  e.  w  ( {
j }  X.  B
) D  <->  prod_ j  e.  (/)  prod_ k  e.  B  C  =  prod_ z  e.  (/)  D ) )
103, 9imbi12d 234 . . . . 5  |-  ( w  =  (/)  ->  ( ( w  C_  A  ->  prod_
j  e.  w  prod_ k  e.  B  C  = 
prod_ z  e.  U_  j  e.  w  ( {
j }  X.  B
) D )  <->  ( (/)  C_  A  ->  prod_ j  e.  (/)  prod_
k  e.  B  C  =  prod_ z  e.  (/)  D ) ) )
1110imbi2d 230 . . . 4  |-  ( w  =  (/)  ->  ( (
ph  ->  ( w  C_  A  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D ) )  <->  ( ph  ->  (
(/)  C_  A  ->  prod_ j  e.  (/)  prod_ k  e.  B  C  =  prod_ z  e.  (/)  D ) ) ) )
12 sseq1 3216 . . . . . 6  |-  ( w  =  x  ->  (
w  C_  A  <->  x  C_  A
) )
13 prodeq1 11864 . . . . . . 7  |-  ( w  =  x  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ j  e.  x  prod_ k  e.  B  C )
14 iuneq1 3940 . . . . . . . 8  |-  ( w  =  x  ->  U_ j  e.  w  ( {
j }  X.  B
)  =  U_ j  e.  x  ( {
j }  X.  B
) )
1514prodeq1d 11875 . . . . . . 7  |-  ( w  =  x  ->  prod_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D  =  prod_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D )
1613, 15eqeq12d 2220 . . . . . 6  |-  ( w  =  x  ->  ( prod_ j  e.  w  prod_ k  e.  B  C  = 
prod_ z  e.  U_  j  e.  w  ( {
j }  X.  B
) D  <->  prod_ j  e.  x  prod_ k  e.  B  C  =  prod_ z  e. 
U_  j  e.  x  ( { j }  X.  B ) D ) )
1712, 16imbi12d 234 . . . . 5  |-  ( w  =  x  ->  (
( w  C_  A  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D )  <-> 
( x  C_  A  ->  prod_ j  e.  x  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D ) ) )
1817imbi2d 230 . . . 4  |-  ( w  =  x  ->  (
( ph  ->  ( w 
C_  A  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  w  ( {
j }  X.  B
) D ) )  <-> 
( ph  ->  ( x 
C_  A  ->  prod_ j  e.  x  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  x  ( {
j }  X.  B
) D ) ) ) )
19 sseq1 3216 . . . . . 6  |-  ( w  =  ( x  u. 
{ y } )  ->  ( w  C_  A 
<->  ( x  u.  {
y } )  C_  A ) )
20 prodeq1 11864 . . . . . . 7  |-  ( w  =  ( x  u. 
{ y } )  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ j  e.  ( x  u.  { y } ) prod_ k  e.  B  C )
21 iuneq1 3940 . . . . . . . 8  |-  ( w  =  ( x  u. 
{ y } )  ->  U_ j  e.  w  ( { j }  X.  B )  =  U_ j  e.  ( x  u.  { y } ) ( { j }  X.  B ) )
2221prodeq1d 11875 . . . . . . 7  |-  ( w  =  ( x  u. 
{ y } )  ->  prod_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D  = 
prod_ z  e.  U_  j  e.  ( x  u.  {
y } ) ( { j }  X.  B ) D )
2320, 22eqeq12d 2220 . . . . . 6  |-  ( w  =  ( x  u. 
{ y } )  ->  ( prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D  <->  prod_ j  e.  ( x  u.  { y } ) prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  ( x  u.  {
y } ) ( { j }  X.  B ) D ) )
2419, 23imbi12d 234 . . . . 5  |-  ( w  =  ( x  u. 
{ y } )  ->  ( ( w 
C_  A  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  w  ( {
j }  X.  B
) D )  <->  ( (
x  u.  { y } )  C_  A  ->  prod_ j  e.  ( x  u.  { y } ) prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  ( x  u.  {
y } ) ( { j }  X.  B ) D ) ) )
2524imbi2d 230 . . . 4  |-  ( w  =  ( x  u. 
{ y } )  ->  ( ( ph  ->  ( w  C_  A  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D ) )  <->  ( ph  ->  ( ( x  u.  {
y } )  C_  A  ->  prod_ j  e.  ( x  u.  { y } ) prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  ( x  u.  {
y } ) ( { j }  X.  B ) D ) ) ) )
26 sseq1 3216 . . . . . 6  |-  ( w  =  A  ->  (
w  C_  A  <->  A  C_  A
) )
27 prodeq1 11864 . . . . . . 7  |-  ( w  =  A  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ j  e.  A  prod_ k  e.  B  C )
28 iuneq1 3940 . . . . . . . 8  |-  ( w  =  A  ->  U_ j  e.  w  ( {
j }  X.  B
)  =  U_ j  e.  A  ( {
j }  X.  B
) )
2928prodeq1d 11875 . . . . . . 7  |-  ( w  =  A  ->  prod_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D  =  prod_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D )
3027, 29eqeq12d 2220 . . . . . 6  |-  ( w  =  A  ->  ( prod_ j  e.  w  prod_ k  e.  B  C  = 
prod_ z  e.  U_  j  e.  w  ( {
j }  X.  B
) D  <->  prod_ j  e.  A  prod_ k  e.  B  C  =  prod_ z  e. 
U_  j  e.  A  ( { j }  X.  B ) D ) )
3126, 30imbi12d 234 . . . . 5  |-  ( w  =  A  ->  (
( w  C_  A  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  w  ( { j }  X.  B ) D )  <-> 
( A  C_  A  ->  prod_ j  e.  A  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D ) ) )
3231imbi2d 230 . . . 4  |-  ( w  =  A  ->  (
( ph  ->  ( w 
C_  A  ->  prod_ j  e.  w  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  w  ( {
j }  X.  B
) D ) )  <-> 
( ph  ->  ( A 
C_  A  ->  prod_ j  e.  A  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  A  ( {
j }  X.  B
) D ) ) ) )
33 prod0 11896 . . . . . 6  |-  prod_ j  e.  (/)  prod_ k  e.  B  C  =  1
34 prod0 11896 . . . . . 6  |-  prod_ z  e.  (/)  D  =  1
3533, 34eqtr4i 2229 . . . . 5  |-  prod_ j  e.  (/)  prod_ k  e.  B  C  =  prod_ z  e.  (/)  D
36352a1i 27 . . . 4  |-  ( ph  ->  ( (/)  C_  A  ->  prod_ j  e.  (/)  prod_ k  e.  B  C  =  prod_ z  e.  (/)  D ) )
37 ssun1 3336 . . . . . . . . 9  |-  x  C_  ( x  u.  { y } )
38 sstr 3201 . . . . . . . . 9  |-  ( ( x  C_  ( x  u.  { y } )  /\  ( x  u. 
{ y } ) 
C_  A )  ->  x  C_  A )
3937, 38mpan 424 . . . . . . . 8  |-  ( ( x  u.  { y } )  C_  A  ->  x  C_  A )
4039imim1i 60 . . . . . . 7  |-  ( ( x  C_  A  ->  prod_
j  e.  x  prod_ k  e.  B  C  = 
prod_ z  e.  U_  j  e.  x  ( {
j }  X.  B
) D )  -> 
( ( x  u. 
{ y } ) 
C_  A  ->  prod_ j  e.  x  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  x  ( {
j }  X.  B
) D ) )
41 fprod2d.1 . . . . . . . . . 10  |-  ( z  =  <. j ,  k
>.  ->  D  =  C )
422ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  Fin  /\  -.  y  e.  x
) )  /\  (
x  u.  { y } )  C_  A
)  ->  A  e.  Fin )
43 fprod2d.3 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  A )  ->  B  e.  Fin )
4443ad4ant14 514 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  Fin  /\ 
-.  y  e.  x
) )  /\  (
x  u.  { y } )  C_  A
)  /\  j  e.  A )  ->  B  e.  Fin )
45 fprod2d.4 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )
4645ad4ant14 514 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  Fin  /\ 
-.  y  e.  x
) )  /\  (
x  u.  { y } )  C_  A
)  /\  ( j  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )
47 simplrr 536 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  Fin  /\  -.  y  e.  x
) )  /\  (
x  u.  { y } )  C_  A
)  ->  -.  y  e.  x )
48 simpr 110 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  Fin  /\  -.  y  e.  x
) )  /\  (
x  u.  { y } )  C_  A
)  ->  ( x  u.  { y } ) 
C_  A )
49 simplrl 535 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  Fin  /\  -.  y  e.  x
) )  /\  (
x  u.  { y } )  C_  A
)  ->  x  e.  Fin )
50 biid 171 . . . . . . . . . 10  |-  ( prod_
j  e.  x  prod_ k  e.  B  C  = 
prod_ z  e.  U_  j  e.  x  ( {
j }  X.  B
) D  <->  prod_ j  e.  x  prod_ k  e.  B  C  =  prod_ z  e. 
U_  j  e.  x  ( { j }  X.  B ) D )
5141, 42, 44, 46, 47, 48, 49, 50fprod2dlemstep 11933 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( x  e.  Fin  /\ 
-.  y  e.  x
) )  /\  (
x  u.  { y } )  C_  A
)  /\  prod_ j  e.  x  prod_ k  e.  B  C  =  prod_ z  e. 
U_  j  e.  x  ( { j }  X.  B ) D )  ->  prod_ j  e.  ( x  u.  { y } ) prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  ( x  u.  {
y } ) ( { j }  X.  B ) D )
5251exp31 364 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Fin  /\  -.  y  e.  x ) )  -> 
( ( x  u. 
{ y } ) 
C_  A  ->  ( prod_ j  e.  x  prod_ k  e.  B  C  = 
prod_ z  e.  U_  j  e.  x  ( {
j }  X.  B
) D  ->  prod_ j  e.  ( x  u. 
{ y } )
prod_ k  e.  B  C  =  prod_ z  e. 
U_  j  e.  ( x  u.  { y } ) ( { j }  X.  B
) D ) ) )
5352a2d 26 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  Fin  /\  -.  y  e.  x ) )  -> 
( ( ( x  u.  { y } )  C_  A  ->  prod_
j  e.  x  prod_ k  e.  B  C  = 
prod_ z  e.  U_  j  e.  x  ( {
j }  X.  B
) D )  -> 
( ( x  u. 
{ y } ) 
C_  A  ->  prod_ j  e.  ( x  u. 
{ y } )
prod_ k  e.  B  C  =  prod_ z  e. 
U_  j  e.  ( x  u.  { y } ) ( { j }  X.  B
) D ) ) )
5440, 53syl5 32 . . . . . 6  |-  ( (
ph  /\  ( x  e.  Fin  /\  -.  y  e.  x ) )  -> 
( ( x  C_  A  ->  prod_ j  e.  x  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D )  ->  ( ( x  u.  { y } )  C_  A  ->  prod_
j  e.  ( x  u.  { y } ) prod_ k  e.  B  C  =  prod_ z  e. 
U_  j  e.  ( x  u.  { y } ) ( { j }  X.  B
) D ) ) )
5554expcom 116 . . . . 5  |-  ( ( x  e.  Fin  /\  -.  y  e.  x
)  ->  ( ph  ->  ( ( x  C_  A  ->  prod_ j  e.  x  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D )  ->  ( ( x  u.  { y } )  C_  A  ->  prod_
j  e.  ( x  u.  { y } ) prod_ k  e.  B  C  =  prod_ z  e. 
U_  j  e.  ( x  u.  { y } ) ( { j }  X.  B
) D ) ) ) )
5655a2d 26 . . . 4  |-  ( ( x  e.  Fin  /\  -.  y  e.  x
)  ->  ( ( ph  ->  ( x  C_  A  ->  prod_ j  e.  x  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D ) )  ->  ( ph  ->  ( ( x  u. 
{ y } ) 
C_  A  ->  prod_ j  e.  ( x  u. 
{ y } )
prod_ k  e.  B  C  =  prod_ z  e. 
U_  j  e.  ( x  u.  { y } ) ( { j }  X.  B
) D ) ) ) )
5711, 18, 25, 32, 36, 56findcard2s 6987 . . 3  |-  ( A  e.  Fin  ->  ( ph  ->  ( A  C_  A  ->  prod_ j  e.  A  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D ) ) )
582, 57mpcom 36 . 2  |-  ( ph  ->  ( A  C_  A  ->  prod_ j  e.  A  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D ) )
591, 58mpi 15 1  |-  ( ph  ->  prod_ j  e.  A  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176    u. cun 3164    C_ wss 3166   (/)c0 3460   {csn 3633   <.cop 3636   U_ciun 3927    X. cxp 4673   Fincfn 6827   CCcc 7923   1c1 7926   prod_cprod 11861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-disj 4022  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-frec 6477  df-1o 6502  df-oadd 6506  df-er 6620  df-en 6828  df-dom 6829  df-fin 6830  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-fz 10131  df-fzo 10265  df-seqfrec 10593  df-exp 10684  df-ihash 10921  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-clim 11590  df-proddc 11862
This theorem is referenced by:  fprodxp  11935  fprodcom2fi  11937
  Copyright terms: Public domain W3C validator