![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2alimi | Unicode version |
Description: Inference doubly quantifying both antecedent and consequent. (Contributed by NM, 3-Feb-2005.) |
Ref | Expression |
---|---|
alimi.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
2alimi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alimi.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | alimi 1455 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | alimi 1455 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-5 1447 ax-gen 1449 |
This theorem is referenced by: mo23 2067 mo3h 2079 spc2gv 2830 spc3gv 2832 euind 2926 reuind 2944 sbnfc2 3119 opelopabt 4264 ssrel 4716 ssrelrel 4728 fnoprabg 5978 |
Copyright terms: Public domain | W3C validator |