Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fnoprabg | Unicode version |
Description: Functionality and domain of an operation class abstraction. (Contributed by NM, 28-Aug-2007.) |
Ref | Expression |
---|---|
fnoprabg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eumo 2051 | . . . . . 6 | |
2 | 1 | imim2i 12 | . . . . 5 |
3 | moanimv 2094 | . . . . 5 | |
4 | 2, 3 | sylibr 133 | . . . 4 |
5 | 4 | 2alimi 1449 | . . 3 |
6 | funoprabg 5952 | . . 3 | |
7 | 5, 6 | syl 14 | . 2 |
8 | dmoprab 5934 | . . 3 | |
9 | nfa1 1534 | . . . 4 | |
10 | nfa2 1572 | . . . 4 | |
11 | simpl 108 | . . . . . . . 8 | |
12 | 11 | exlimiv 1591 | . . . . . . 7 |
13 | euex 2049 | . . . . . . . . . 10 | |
14 | 13 | imim2i 12 | . . . . . . . . 9 |
15 | 14 | ancld 323 | . . . . . . . 8 |
16 | 19.42v 1899 | . . . . . . . 8 | |
17 | 15, 16 | syl6ibr 161 | . . . . . . 7 |
18 | 12, 17 | impbid2 142 | . . . . . 6 |
19 | 18 | sps 1530 | . . . . 5 |
20 | 19 | sps 1530 | . . . 4 |
21 | 9, 10, 20 | opabbid 4054 | . . 3 |
22 | 8, 21 | eqtrid 2215 | . 2 |
23 | df-fn 5201 | . 2 | |
24 | 7, 22, 23 | sylanbrc 415 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1346 wceq 1348 wex 1485 weu 2019 wmo 2020 copab 4049 cdm 4611 wfun 5192 wfn 5193 coprab 5854 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-fun 5200 df-fn 5201 df-oprab 5857 |
This theorem is referenced by: fnoprab 5956 ovg 5991 |
Copyright terms: Public domain | W3C validator |