ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnoprabg Unicode version

Theorem fnoprabg 6069
Description: Functionality and domain of an operation class abstraction. (Contributed by NM, 28-Aug-2007.)
Assertion
Ref Expression
fnoprabg  |-  ( A. x A. y ( ph  ->  E! z ps )  ->  { <. <. x ,  y
>. ,  z >.  |  ( ph  /\  ps ) }  Fn  { <. x ,  y >.  |  ph } )
Distinct variable groups:    x, y, z    ph, z
Allowed substitution hints:    ph( x, y)    ps( x, y, z)

Proof of Theorem fnoprabg
StepHypRef Expression
1 eumo 2087 . . . . . 6  |-  ( E! z ps  ->  E* z ps )
21imim2i 12 . . . . 5  |-  ( (
ph  ->  E! z ps )  ->  ( ph  ->  E* z ps )
)
3 moanimv 2131 . . . . 5  |-  ( E* z ( ph  /\  ps )  <->  ( ph  ->  E* z ps ) )
42, 3sylibr 134 . . . 4  |-  ( (
ph  ->  E! z ps )  ->  E* z
( ph  /\  ps )
)
542alimi 1480 . . 3  |-  ( A. x A. y ( ph  ->  E! z ps )  ->  A. x A. y E* z ( ph  /\  ps ) )
6 funoprabg 6067 . . 3  |-  ( A. x A. y E* z
( ph  /\  ps )  ->  Fun  { <. <. x ,  y >. ,  z
>.  |  ( ph  /\ 
ps ) } )
75, 6syl 14 . 2  |-  ( A. x A. y ( ph  ->  E! z ps )  ->  Fun  { <. <. x ,  y >. ,  z
>.  |  ( ph  /\ 
ps ) } )
8 dmoprab 6049 . . 3  |-  dom  { <. <. x ,  y
>. ,  z >.  |  ( ph  /\  ps ) }  =  { <. x ,  y >.  |  E. z ( ph  /\ 
ps ) }
9 nfa1 1565 . . . 4  |-  F/ x A. x A. y (
ph  ->  E! z ps )
10 nfa2 1603 . . . 4  |-  F/ y A. x A. y
( ph  ->  E! z ps )
11 simpl 109 . . . . . . . 8  |-  ( (
ph  /\  ps )  ->  ph )
1211exlimiv 1622 . . . . . . 7  |-  ( E. z ( ph  /\  ps )  ->  ph )
13 euex 2085 . . . . . . . . . 10  |-  ( E! z ps  ->  E. z ps )
1413imim2i 12 . . . . . . . . 9  |-  ( (
ph  ->  E! z ps )  ->  ( ph  ->  E. z ps )
)
1514ancld 325 . . . . . . . 8  |-  ( (
ph  ->  E! z ps )  ->  ( ph  ->  ( ph  /\  E. z ps ) ) )
16 19.42v 1931 . . . . . . . 8  |-  ( E. z ( ph  /\  ps )  <->  ( ph  /\  E. z ps ) )
1715, 16imbitrrdi 162 . . . . . . 7  |-  ( (
ph  ->  E! z ps )  ->  ( ph  ->  E. z ( ph  /\ 
ps ) ) )
1812, 17impbid2 143 . . . . . 6  |-  ( (
ph  ->  E! z ps )  ->  ( E. z ( ph  /\  ps )  <->  ph ) )
1918sps 1561 . . . . 5  |-  ( A. y ( ph  ->  E! z ps )  -> 
( E. z (
ph  /\  ps )  <->  ph ) )
2019sps 1561 . . . 4  |-  ( A. x A. y ( ph  ->  E! z ps )  ->  ( E. z (
ph  /\  ps )  <->  ph ) )
219, 10, 20opabbid 4125 . . 3  |-  ( A. x A. y ( ph  ->  E! z ps )  ->  { <. x ,  y
>.  |  E. z
( ph  /\  ps ) }  =  { <. x ,  y >.  |  ph } )
228, 21eqtrid 2252 . 2  |-  ( A. x A. y ( ph  ->  E! z ps )  ->  dom  { <. <. x ,  y >. ,  z
>.  |  ( ph  /\ 
ps ) }  =  { <. x ,  y
>.  |  ph } )
23 df-fn 5293 . 2  |-  ( {
<. <. x ,  y
>. ,  z >.  |  ( ph  /\  ps ) }  Fn  { <. x ,  y >.  |  ph } 
<->  ( Fun  { <. <.
x ,  y >. ,  z >.  |  (
ph  /\  ps ) }  /\  dom  { <. <.
x ,  y >. ,  z >.  |  (
ph  /\  ps ) }  =  { <. x ,  y >.  |  ph } ) )
247, 22, 23sylanbrc 417 1  |-  ( A. x A. y ( ph  ->  E! z ps )  ->  { <. <. x ,  y
>. ,  z >.  |  ( ph  /\  ps ) }  Fn  { <. x ,  y >.  |  ph } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1371    = wceq 1373   E.wex 1516   E!weu 2055   E*wmo 2056   {copab 4120   dom cdm 4693   Fun wfun 5284    Fn wfn 5285   {coprab 5968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-fun 5292  df-fn 5293  df-oprab 5971
This theorem is referenced by:  fnoprab  6071  ovg  6108
  Copyright terms: Public domain W3C validator