Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fnoprabg | Unicode version |
Description: Functionality and domain of an operation class abstraction. (Contributed by NM, 28-Aug-2007.) |
Ref | Expression |
---|---|
fnoprabg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eumo 2046 | . . . . . 6 | |
2 | 1 | imim2i 12 | . . . . 5 |
3 | moanimv 2089 | . . . . 5 | |
4 | 2, 3 | sylibr 133 | . . . 4 |
5 | 4 | 2alimi 1444 | . . 3 |
6 | funoprabg 5941 | . . 3 | |
7 | 5, 6 | syl 14 | . 2 |
8 | dmoprab 5923 | . . 3 | |
9 | nfa1 1529 | . . . 4 | |
10 | nfa2 1567 | . . . 4 | |
11 | simpl 108 | . . . . . . . 8 | |
12 | 11 | exlimiv 1586 | . . . . . . 7 |
13 | euex 2044 | . . . . . . . . . 10 | |
14 | 13 | imim2i 12 | . . . . . . . . 9 |
15 | 14 | ancld 323 | . . . . . . . 8 |
16 | 19.42v 1894 | . . . . . . . 8 | |
17 | 15, 16 | syl6ibr 161 | . . . . . . 7 |
18 | 12, 17 | impbid2 142 | . . . . . 6 |
19 | 18 | sps 1525 | . . . . 5 |
20 | 19 | sps 1525 | . . . 4 |
21 | 9, 10, 20 | opabbid 4047 | . . 3 |
22 | 8, 21 | syl5eq 2211 | . 2 |
23 | df-fn 5191 | . 2 | |
24 | 7, 22, 23 | sylanbrc 414 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1341 wceq 1343 wex 1480 weu 2014 wmo 2015 copab 4042 cdm 4604 wfun 5182 wfn 5183 coprab 5843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-fun 5190 df-fn 5191 df-oprab 5846 |
This theorem is referenced by: fnoprab 5945 ovg 5980 |
Copyright terms: Public domain | W3C validator |