Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fnoprabg | Unicode version |
Description: Functionality and domain of an operation class abstraction. (Contributed by NM, 28-Aug-2007.) |
Ref | Expression |
---|---|
fnoprabg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eumo 2038 | . . . . . 6 | |
2 | 1 | imim2i 12 | . . . . 5 |
3 | moanimv 2081 | . . . . 5 | |
4 | 2, 3 | sylibr 133 | . . . 4 |
5 | 4 | 2alimi 1436 | . . 3 |
6 | funoprabg 5917 | . . 3 | |
7 | 5, 6 | syl 14 | . 2 |
8 | dmoprab 5899 | . . 3 | |
9 | nfa1 1521 | . . . 4 | |
10 | nfa2 1559 | . . . 4 | |
11 | simpl 108 | . . . . . . . 8 | |
12 | 11 | exlimiv 1578 | . . . . . . 7 |
13 | euex 2036 | . . . . . . . . . 10 | |
14 | 13 | imim2i 12 | . . . . . . . . 9 |
15 | 14 | ancld 323 | . . . . . . . 8 |
16 | 19.42v 1886 | . . . . . . . 8 | |
17 | 15, 16 | syl6ibr 161 | . . . . . . 7 |
18 | 12, 17 | impbid2 142 | . . . . . 6 |
19 | 18 | sps 1517 | . . . . 5 |
20 | 19 | sps 1517 | . . . 4 |
21 | 9, 10, 20 | opabbid 4029 | . . 3 |
22 | 8, 21 | syl5eq 2202 | . 2 |
23 | df-fn 5172 | . 2 | |
24 | 7, 22, 23 | sylanbrc 414 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1333 wceq 1335 wex 1472 weu 2006 wmo 2007 copab 4024 cdm 4585 wfun 5163 wfn 5164 coprab 5822 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-br 3966 df-opab 4026 df-id 4253 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-fun 5171 df-fn 5172 df-oprab 5825 |
This theorem is referenced by: fnoprab 5921 ovg 5956 |
Copyright terms: Public domain | W3C validator |