| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssrelrel | Unicode version | ||
| Description: A subclass relationship determined by ordered triples. Use relrelss 5254 to express the antecedent in terms of the relation predicate. (Contributed by NM, 17-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| ssrelrel |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3218 |
. . . 4
| |
| 2 | 1 | alrimiv 1920 |
. . 3
|
| 3 | 2 | alrimivv 1921 |
. 2
|
| 4 | elvvv 4781 |
. . . . . . . 8
| |
| 5 | eleq1 2292 |
. . . . . . . . . . . . . 14
| |
| 6 | eleq1 2292 |
. . . . . . . . . . . . . 14
| |
| 7 | 5, 6 | imbi12d 234 |
. . . . . . . . . . . . 13
|
| 8 | 7 | biimprcd 160 |
. . . . . . . . . . . 12
|
| 9 | 8 | alimi 1501 |
. . . . . . . . . . 11
|
| 10 | 19.23v 1929 |
. . . . . . . . . . 11
| |
| 11 | 9, 10 | sylib 122 |
. . . . . . . . . 10
|
| 12 | 11 | 2alimi 1502 |
. . . . . . . . 9
|
| 13 | 19.23vv 1930 |
. . . . . . . . 9
| |
| 14 | 12, 13 | sylib 122 |
. . . . . . . 8
|
| 15 | 4, 14 | biimtrid 152 |
. . . . . . 7
|
| 16 | 15 | com23 78 |
. . . . . 6
|
| 17 | 16 | a2d 26 |
. . . . 5
|
| 18 | 17 | alimdv 1925 |
. . . 4
|
| 19 | ssalel 3212 |
. . . 4
| |
| 20 | ssalel 3212 |
. . . 4
| |
| 21 | 18, 19, 20 | 3imtr4g 205 |
. . 3
|
| 22 | 21 | com12 30 |
. 2
|
| 23 | 3, 22 | impbid2 143 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-opab 4145 df-xp 4724 |
| This theorem is referenced by: eqrelrel 4819 |
| Copyright terms: Public domain | W3C validator |