ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssrelrel Unicode version

Theorem ssrelrel 4728
Description: A subclass relationship determined by ordered triples. Use relrelss 5157 to express the antecedent in terms of the relation predicate. (Contributed by NM, 17-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
ssrelrel  |-  ( A 
C_  ( ( _V 
X.  _V )  X.  _V )  ->  ( A  C_  B 
<-> 
A. x A. y A. z ( <. <. x ,  y >. ,  z
>.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B ) ) )
Distinct variable groups:    x, y, z, A    x, B, y, z

Proof of Theorem ssrelrel
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 ssel 3151 . . . 4  |-  ( A 
C_  B  ->  ( <. <. x ,  y
>. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B ) )
21alrimiv 1874 . . 3  |-  ( A 
C_  B  ->  A. z
( <. <. x ,  y
>. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B ) )
32alrimivv 1875 . 2  |-  ( A 
C_  B  ->  A. x A. y A. z (
<. <. x ,  y
>. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B ) )
4 elvvv 4691 . . . . . . . 8  |-  ( w  e.  ( ( _V 
X.  _V )  X.  _V ) 
<->  E. x E. y E. z  w  =  <. <. x ,  y
>. ,  z >. )
5 eleq1 2240 . . . . . . . . . . . . . 14  |-  ( w  =  <. <. x ,  y
>. ,  z >.  -> 
( w  e.  A  <->  <. <. x ,  y >. ,  z >.  e.  A
) )
6 eleq1 2240 . . . . . . . . . . . . . 14  |-  ( w  =  <. <. x ,  y
>. ,  z >.  -> 
( w  e.  B  <->  <. <. x ,  y >. ,  z >.  e.  B
) )
75, 6imbi12d 234 . . . . . . . . . . . . 13  |-  ( w  =  <. <. x ,  y
>. ,  z >.  -> 
( ( w  e.  A  ->  w  e.  B )  <->  ( <. <.
x ,  y >. ,  z >.  e.  A  -> 
<. <. x ,  y
>. ,  z >.  e.  B ) ) )
87biimprcd 160 . . . . . . . . . . . 12  |-  ( (
<. <. x ,  y
>. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  -> 
( w  =  <. <.
x ,  y >. ,  z >.  ->  (
w  e.  A  ->  w  e.  B )
) )
98alimi 1455 . . . . . . . . . . 11  |-  ( A. z ( <. <. x ,  y >. ,  z
>.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  ->  A. z ( w  = 
<. <. x ,  y
>. ,  z >.  -> 
( w  e.  A  ->  w  e.  B ) ) )
10 19.23v 1883 . . . . . . . . . . 11  |-  ( A. z ( w  = 
<. <. x ,  y
>. ,  z >.  -> 
( w  e.  A  ->  w  e.  B ) )  <->  ( E. z  w  =  <. <. x ,  y >. ,  z
>.  ->  ( w  e.  A  ->  w  e.  B ) ) )
119, 10sylib 122 . . . . . . . . . 10  |-  ( A. z ( <. <. x ,  y >. ,  z
>.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  -> 
( E. z  w  =  <. <. x ,  y
>. ,  z >.  -> 
( w  e.  A  ->  w  e.  B ) ) )
12112alimi 1456 . . . . . . . . 9  |-  ( A. x A. y A. z
( <. <. x ,  y
>. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  ->  A. x A. y ( E. z  w  = 
<. <. x ,  y
>. ,  z >.  -> 
( w  e.  A  ->  w  e.  B ) ) )
13 19.23vv 1884 . . . . . . . . 9  |-  ( A. x A. y ( E. z  w  =  <. <.
x ,  y >. ,  z >.  ->  (
w  e.  A  ->  w  e.  B )
)  <->  ( E. x E. y E. z  w  =  <. <. x ,  y
>. ,  z >.  -> 
( w  e.  A  ->  w  e.  B ) ) )
1412, 13sylib 122 . . . . . . . 8  |-  ( A. x A. y A. z
( <. <. x ,  y
>. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  -> 
( E. x E. y E. z  w  = 
<. <. x ,  y
>. ,  z >.  -> 
( w  e.  A  ->  w  e.  B ) ) )
154, 14biimtrid 152 . . . . . . 7  |-  ( A. x A. y A. z
( <. <. x ,  y
>. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  -> 
( w  e.  ( ( _V  X.  _V )  X.  _V )  -> 
( w  e.  A  ->  w  e.  B ) ) )
1615com23 78 . . . . . 6  |-  ( A. x A. y A. z
( <. <. x ,  y
>. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  -> 
( w  e.  A  ->  ( w  e.  ( ( _V  X.  _V )  X.  _V )  ->  w  e.  B )
) )
1716a2d 26 . . . . 5  |-  ( A. x A. y A. z
( <. <. x ,  y
>. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  -> 
( ( w  e.  A  ->  w  e.  ( ( _V  X.  _V )  X.  _V )
)  ->  ( w  e.  A  ->  w  e.  B ) ) )
1817alimdv 1879 . . . 4  |-  ( A. x A. y A. z
( <. <. x ,  y
>. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  -> 
( A. w ( w  e.  A  ->  w  e.  ( ( _V  X.  _V )  X. 
_V ) )  ->  A. w ( w  e.  A  ->  w  e.  B ) ) )
19 dfss2 3146 . . . 4  |-  ( A 
C_  ( ( _V 
X.  _V )  X.  _V ) 
<-> 
A. w ( w  e.  A  ->  w  e.  ( ( _V  X.  _V )  X.  _V )
) )
20 dfss2 3146 . . . 4  |-  ( A 
C_  B  <->  A. w
( w  e.  A  ->  w  e.  B ) )
2118, 19, 203imtr4g 205 . . 3  |-  ( A. x A. y A. z
( <. <. x ,  y
>. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  -> 
( A  C_  (
( _V  X.  _V )  X.  _V )  ->  A  C_  B ) )
2221com12 30 . 2  |-  ( A 
C_  ( ( _V 
X.  _V )  X.  _V )  ->  ( A. x A. y A. z (
<. <. x ,  y
>. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  ->  A  C_  B ) )
233, 22impbid2 143 1  |-  ( A 
C_  ( ( _V 
X.  _V )  X.  _V )  ->  ( A  C_  B 
<-> 
A. x A. y A. z ( <. <. x ,  y >. ,  z
>.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1351    = wceq 1353   E.wex 1492    e. wcel 2148   _Vcvv 2739    C_ wss 3131   <.cop 3597    X. cxp 4626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-opab 4067  df-xp 4634
This theorem is referenced by:  eqrelrel  4729
  Copyright terms: Public domain W3C validator