Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssrelrel | Unicode version |
Description: A subclass relationship determined by ordered triples. Use relrelss 5137 to express the antecedent in terms of the relation predicate. (Contributed by NM, 17-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
ssrelrel |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3141 | . . . 4 | |
2 | 1 | alrimiv 1867 | . . 3 |
3 | 2 | alrimivv 1868 | . 2 |
4 | elvvv 4674 | . . . . . . . 8 | |
5 | eleq1 2233 | . . . . . . . . . . . . . 14 | |
6 | eleq1 2233 | . . . . . . . . . . . . . 14 | |
7 | 5, 6 | imbi12d 233 | . . . . . . . . . . . . 13 |
8 | 7 | biimprcd 159 | . . . . . . . . . . . 12 |
9 | 8 | alimi 1448 | . . . . . . . . . . 11 |
10 | 19.23v 1876 | . . . . . . . . . . 11 | |
11 | 9, 10 | sylib 121 | . . . . . . . . . 10 |
12 | 11 | 2alimi 1449 | . . . . . . . . 9 |
13 | 19.23vv 1877 | . . . . . . . . 9 | |
14 | 12, 13 | sylib 121 | . . . . . . . 8 |
15 | 4, 14 | syl5bi 151 | . . . . . . 7 |
16 | 15 | com23 78 | . . . . . 6 |
17 | 16 | a2d 26 | . . . . 5 |
18 | 17 | alimdv 1872 | . . . 4 |
19 | dfss2 3136 | . . . 4 | |
20 | dfss2 3136 | . . . 4 | |
21 | 18, 19, 20 | 3imtr4g 204 | . . 3 |
22 | 21 | com12 30 | . 2 |
23 | 3, 22 | impbid2 142 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wal 1346 wceq 1348 wex 1485 wcel 2141 cvv 2730 wss 3121 cop 3586 cxp 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-opab 4051 df-xp 4617 |
This theorem is referenced by: eqrelrel 4712 |
Copyright terms: Public domain | W3C validator |