Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssrelrel | Unicode version |
Description: A subclass relationship determined by ordered triples. Use relrelss 5105 to express the antecedent in terms of the relation predicate. (Contributed by NM, 17-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
ssrelrel |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3118 | . . . 4 | |
2 | 1 | alrimiv 1851 | . . 3 |
3 | 2 | alrimivv 1852 | . 2 |
4 | elvvv 4642 | . . . . . . . 8 | |
5 | eleq1 2217 | . . . . . . . . . . . . . 14 | |
6 | eleq1 2217 | . . . . . . . . . . . . . 14 | |
7 | 5, 6 | imbi12d 233 | . . . . . . . . . . . . 13 |
8 | 7 | biimprcd 159 | . . . . . . . . . . . 12 |
9 | 8 | alimi 1432 | . . . . . . . . . . 11 |
10 | 19.23v 1860 | . . . . . . . . . . 11 | |
11 | 9, 10 | sylib 121 | . . . . . . . . . 10 |
12 | 11 | 2alimi 1433 | . . . . . . . . 9 |
13 | 19.23vv 1861 | . . . . . . . . 9 | |
14 | 12, 13 | sylib 121 | . . . . . . . 8 |
15 | 4, 14 | syl5bi 151 | . . . . . . 7 |
16 | 15 | com23 78 | . . . . . 6 |
17 | 16 | a2d 26 | . . . . 5 |
18 | 17 | alimdv 1856 | . . . 4 |
19 | dfss2 3113 | . . . 4 | |
20 | dfss2 3113 | . . . 4 | |
21 | 18, 19, 20 | 3imtr4g 204 | . . 3 |
22 | 21 | com12 30 | . 2 |
23 | 3, 22 | impbid2 142 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wal 1330 wceq 1332 wex 1469 wcel 2125 cvv 2709 wss 3098 cop 3559 cxp 4577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-v 2711 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-opab 4022 df-xp 4585 |
This theorem is referenced by: eqrelrel 4680 |
Copyright terms: Public domain | W3C validator |