ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssrelrel Unicode version

Theorem ssrelrel 4679
Description: A subclass relationship determined by ordered triples. Use relrelss 5105 to express the antecedent in terms of the relation predicate. (Contributed by NM, 17-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
ssrelrel  |-  ( A 
C_  ( ( _V 
X.  _V )  X.  _V )  ->  ( A  C_  B 
<-> 
A. x A. y A. z ( <. <. x ,  y >. ,  z
>.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B ) ) )
Distinct variable groups:    x, y, z, A    x, B, y, z

Proof of Theorem ssrelrel
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 ssel 3118 . . . 4  |-  ( A 
C_  B  ->  ( <. <. x ,  y
>. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B ) )
21alrimiv 1851 . . 3  |-  ( A 
C_  B  ->  A. z
( <. <. x ,  y
>. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B ) )
32alrimivv 1852 . 2  |-  ( A 
C_  B  ->  A. x A. y A. z (
<. <. x ,  y
>. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B ) )
4 elvvv 4642 . . . . . . . 8  |-  ( w  e.  ( ( _V 
X.  _V )  X.  _V ) 
<->  E. x E. y E. z  w  =  <. <. x ,  y
>. ,  z >. )
5 eleq1 2217 . . . . . . . . . . . . . 14  |-  ( w  =  <. <. x ,  y
>. ,  z >.  -> 
( w  e.  A  <->  <. <. x ,  y >. ,  z >.  e.  A
) )
6 eleq1 2217 . . . . . . . . . . . . . 14  |-  ( w  =  <. <. x ,  y
>. ,  z >.  -> 
( w  e.  B  <->  <. <. x ,  y >. ,  z >.  e.  B
) )
75, 6imbi12d 233 . . . . . . . . . . . . 13  |-  ( w  =  <. <. x ,  y
>. ,  z >.  -> 
( ( w  e.  A  ->  w  e.  B )  <->  ( <. <.
x ,  y >. ,  z >.  e.  A  -> 
<. <. x ,  y
>. ,  z >.  e.  B ) ) )
87biimprcd 159 . . . . . . . . . . . 12  |-  ( (
<. <. x ,  y
>. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  -> 
( w  =  <. <.
x ,  y >. ,  z >.  ->  (
w  e.  A  ->  w  e.  B )
) )
98alimi 1432 . . . . . . . . . . 11  |-  ( A. z ( <. <. x ,  y >. ,  z
>.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  ->  A. z ( w  = 
<. <. x ,  y
>. ,  z >.  -> 
( w  e.  A  ->  w  e.  B ) ) )
10 19.23v 1860 . . . . . . . . . . 11  |-  ( A. z ( w  = 
<. <. x ,  y
>. ,  z >.  -> 
( w  e.  A  ->  w  e.  B ) )  <->  ( E. z  w  =  <. <. x ,  y >. ,  z
>.  ->  ( w  e.  A  ->  w  e.  B ) ) )
119, 10sylib 121 . . . . . . . . . 10  |-  ( A. z ( <. <. x ,  y >. ,  z
>.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  -> 
( E. z  w  =  <. <. x ,  y
>. ,  z >.  -> 
( w  e.  A  ->  w  e.  B ) ) )
12112alimi 1433 . . . . . . . . 9  |-  ( A. x A. y A. z
( <. <. x ,  y
>. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  ->  A. x A. y ( E. z  w  = 
<. <. x ,  y
>. ,  z >.  -> 
( w  e.  A  ->  w  e.  B ) ) )
13 19.23vv 1861 . . . . . . . . 9  |-  ( A. x A. y ( E. z  w  =  <. <.
x ,  y >. ,  z >.  ->  (
w  e.  A  ->  w  e.  B )
)  <->  ( E. x E. y E. z  w  =  <. <. x ,  y
>. ,  z >.  -> 
( w  e.  A  ->  w  e.  B ) ) )
1412, 13sylib 121 . . . . . . . 8  |-  ( A. x A. y A. z
( <. <. x ,  y
>. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  -> 
( E. x E. y E. z  w  = 
<. <. x ,  y
>. ,  z >.  -> 
( w  e.  A  ->  w  e.  B ) ) )
154, 14syl5bi 151 . . . . . . 7  |-  ( A. x A. y A. z
( <. <. x ,  y
>. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  -> 
( w  e.  ( ( _V  X.  _V )  X.  _V )  -> 
( w  e.  A  ->  w  e.  B ) ) )
1615com23 78 . . . . . 6  |-  ( A. x A. y A. z
( <. <. x ,  y
>. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  -> 
( w  e.  A  ->  ( w  e.  ( ( _V  X.  _V )  X.  _V )  ->  w  e.  B )
) )
1716a2d 26 . . . . 5  |-  ( A. x A. y A. z
( <. <. x ,  y
>. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  -> 
( ( w  e.  A  ->  w  e.  ( ( _V  X.  _V )  X.  _V )
)  ->  ( w  e.  A  ->  w  e.  B ) ) )
1817alimdv 1856 . . . 4  |-  ( A. x A. y A. z
( <. <. x ,  y
>. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  -> 
( A. w ( w  e.  A  ->  w  e.  ( ( _V  X.  _V )  X. 
_V ) )  ->  A. w ( w  e.  A  ->  w  e.  B ) ) )
19 dfss2 3113 . . . 4  |-  ( A 
C_  ( ( _V 
X.  _V )  X.  _V ) 
<-> 
A. w ( w  e.  A  ->  w  e.  ( ( _V  X.  _V )  X.  _V )
) )
20 dfss2 3113 . . . 4  |-  ( A 
C_  B  <->  A. w
( w  e.  A  ->  w  e.  B ) )
2118, 19, 203imtr4g 204 . . 3  |-  ( A. x A. y A. z
( <. <. x ,  y
>. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  -> 
( A  C_  (
( _V  X.  _V )  X.  _V )  ->  A  C_  B ) )
2221com12 30 . 2  |-  ( A 
C_  ( ( _V 
X.  _V )  X.  _V )  ->  ( A. x A. y A. z (
<. <. x ,  y
>. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  ->  A  C_  B ) )
233, 22impbid2 142 1  |-  ( A 
C_  ( ( _V 
X.  _V )  X.  _V )  ->  ( A  C_  B 
<-> 
A. x A. y A. z ( <. <. x ,  y >. ,  z
>.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1330    = wceq 1332   E.wex 1469    e. wcel 2125   _Vcvv 2709    C_ wss 3098   <.cop 3559    X. cxp 4577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-v 2711  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-opab 4022  df-xp 4585
This theorem is referenced by:  eqrelrel  4680
  Copyright terms: Public domain W3C validator