ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssrelrel Unicode version

Theorem ssrelrel 4526
Description: A subclass relationship determined by ordered triples. Use relrelss 4944 to express the antecedent in terms of the relation predicate. (Contributed by NM, 17-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
ssrelrel  |-  ( A 
C_  ( ( _V 
X.  _V )  X.  _V )  ->  ( A  C_  B 
<-> 
A. x A. y A. z ( <. <. x ,  y >. ,  z
>.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B ) ) )
Distinct variable groups:    x, y, z, A    x, B, y, z

Proof of Theorem ssrelrel
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 ssel 3017 . . . 4  |-  ( A 
C_  B  ->  ( <. <. x ,  y
>. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B ) )
21alrimiv 1802 . . 3  |-  ( A 
C_  B  ->  A. z
( <. <. x ,  y
>. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B ) )
32alrimivv 1803 . 2  |-  ( A 
C_  B  ->  A. x A. y A. z (
<. <. x ,  y
>. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B ) )
4 elvvv 4489 . . . . . . . 8  |-  ( w  e.  ( ( _V 
X.  _V )  X.  _V ) 
<->  E. x E. y E. z  w  =  <. <. x ,  y
>. ,  z >. )
5 eleq1 2150 . . . . . . . . . . . . . 14  |-  ( w  =  <. <. x ,  y
>. ,  z >.  -> 
( w  e.  A  <->  <. <. x ,  y >. ,  z >.  e.  A
) )
6 eleq1 2150 . . . . . . . . . . . . . 14  |-  ( w  =  <. <. x ,  y
>. ,  z >.  -> 
( w  e.  B  <->  <. <. x ,  y >. ,  z >.  e.  B
) )
75, 6imbi12d 232 . . . . . . . . . . . . 13  |-  ( w  =  <. <. x ,  y
>. ,  z >.  -> 
( ( w  e.  A  ->  w  e.  B )  <->  ( <. <.
x ,  y >. ,  z >.  e.  A  -> 
<. <. x ,  y
>. ,  z >.  e.  B ) ) )
87biimprcd 158 . . . . . . . . . . . 12  |-  ( (
<. <. x ,  y
>. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  -> 
( w  =  <. <.
x ,  y >. ,  z >.  ->  (
w  e.  A  ->  w  e.  B )
) )
98alimi 1389 . . . . . . . . . . 11  |-  ( A. z ( <. <. x ,  y >. ,  z
>.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  ->  A. z ( w  = 
<. <. x ,  y
>. ,  z >.  -> 
( w  e.  A  ->  w  e.  B ) ) )
10 19.23v 1811 . . . . . . . . . . 11  |-  ( A. z ( w  = 
<. <. x ,  y
>. ,  z >.  -> 
( w  e.  A  ->  w  e.  B ) )  <->  ( E. z  w  =  <. <. x ,  y >. ,  z
>.  ->  ( w  e.  A  ->  w  e.  B ) ) )
119, 10sylib 120 . . . . . . . . . 10  |-  ( A. z ( <. <. x ,  y >. ,  z
>.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  -> 
( E. z  w  =  <. <. x ,  y
>. ,  z >.  -> 
( w  e.  A  ->  w  e.  B ) ) )
12112alimi 1390 . . . . . . . . 9  |-  ( A. x A. y A. z
( <. <. x ,  y
>. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  ->  A. x A. y ( E. z  w  = 
<. <. x ,  y
>. ,  z >.  -> 
( w  e.  A  ->  w  e.  B ) ) )
13 19.23vv 1812 . . . . . . . . 9  |-  ( A. x A. y ( E. z  w  =  <. <.
x ,  y >. ,  z >.  ->  (
w  e.  A  ->  w  e.  B )
)  <->  ( E. x E. y E. z  w  =  <. <. x ,  y
>. ,  z >.  -> 
( w  e.  A  ->  w  e.  B ) ) )
1412, 13sylib 120 . . . . . . . 8  |-  ( A. x A. y A. z
( <. <. x ,  y
>. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  -> 
( E. x E. y E. z  w  = 
<. <. x ,  y
>. ,  z >.  -> 
( w  e.  A  ->  w  e.  B ) ) )
154, 14syl5bi 150 . . . . . . 7  |-  ( A. x A. y A. z
( <. <. x ,  y
>. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  -> 
( w  e.  ( ( _V  X.  _V )  X.  _V )  -> 
( w  e.  A  ->  w  e.  B ) ) )
1615com23 77 . . . . . 6  |-  ( A. x A. y A. z
( <. <. x ,  y
>. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  -> 
( w  e.  A  ->  ( w  e.  ( ( _V  X.  _V )  X.  _V )  ->  w  e.  B )
) )
1716a2d 26 . . . . 5  |-  ( A. x A. y A. z
( <. <. x ,  y
>. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  -> 
( ( w  e.  A  ->  w  e.  ( ( _V  X.  _V )  X.  _V )
)  ->  ( w  e.  A  ->  w  e.  B ) ) )
1817alimdv 1807 . . . 4  |-  ( A. x A. y A. z
( <. <. x ,  y
>. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  -> 
( A. w ( w  e.  A  ->  w  e.  ( ( _V  X.  _V )  X. 
_V ) )  ->  A. w ( w  e.  A  ->  w  e.  B ) ) )
19 dfss2 3012 . . . 4  |-  ( A 
C_  ( ( _V 
X.  _V )  X.  _V ) 
<-> 
A. w ( w  e.  A  ->  w  e.  ( ( _V  X.  _V )  X.  _V )
) )
20 dfss2 3012 . . . 4  |-  ( A 
C_  B  <->  A. w
( w  e.  A  ->  w  e.  B ) )
2118, 19, 203imtr4g 203 . . 3  |-  ( A. x A. y A. z
( <. <. x ,  y
>. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  -> 
( A  C_  (
( _V  X.  _V )  X.  _V )  ->  A  C_  B ) )
2221com12 30 . 2  |-  ( A 
C_  ( ( _V 
X.  _V )  X.  _V )  ->  ( A. x A. y A. z (
<. <. x ,  y
>. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  ->  A  C_  B ) )
233, 22impbid2 141 1  |-  ( A 
C_  ( ( _V 
X.  _V )  X.  _V )  ->  ( A  C_  B 
<-> 
A. x A. y A. z ( <. <. x ,  y >. ,  z
>.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103   A.wal 1287    = wceq 1289   E.wex 1426    e. wcel 1438   _Vcvv 2619    C_ wss 2997   <.cop 3444    X. cxp 4426
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-v 2621  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-opab 3892  df-xp 4434
This theorem is referenced by:  eqrelrel  4527
  Copyright terms: Public domain W3C validator